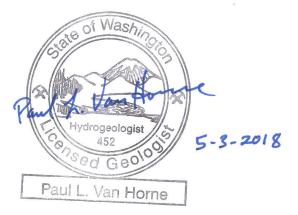
SUBMITTED TO: U.S. Geological Survey, Department of Earth and Space Science University of Washington PO Box 351310 Seattle, WA 98195-1310

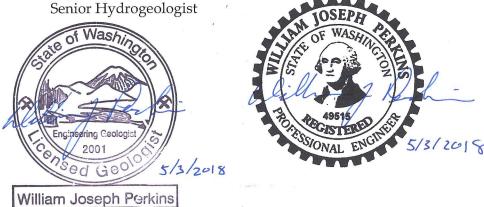
BY: Shannon & Wilson, Inc. 400 N. 34th St., Suite 100 Seattle, WA 98103

(206) 632-8020 www.shannonwilson.com

GEOTECHNICAL DATA REPORT Stanford Center Liquefaction Monitoring Array SEATTLE, WASHINGTON



May 2018 Shannon & Wilson No.: 21-1-21441-00 Stanford Center Liquefaction Monitoring Array Seattle, Washington


Geotechnical Data Report

Shannon & Wilson provided these services under Purchase Order G10PX02984 with the U.S. Geological Survey.

This report was prepared and reviewed by:

Paul L. Van Horne, LHG

William J. Perkins, LEG, PE Vice President, Earthquake Engineering Services

PVH:WJP/pvh

CO	NTEN	ITS		ii
1	Intr	oductio	yn	1
	1.1	Purpo	ose and Scope	2
	1.2	Conte	ent and Organization of Geotechnical Data Report (GDR)	3
	1.3	Limit	ations	3
2	Sub	surface	Explorations and Testing	3
	2.1	Drilli	ng Methods	4
		2.1.1	Mud Rotary Drilling	4
		2.1.2	Hollow-Stem Auger Drilling	4
	2.2	Soil S	Campling Methods	4
	2.3	Piezo	meter and Seismometer Casing Installation	5
		2.3.1	Piezometer Installation	5
		2.3.2	Seismometer Casing Installation	5
		2.3.3	Piezometer Development	5
		2.3.4	Groundwater Monitoring	6
	2.4	Geote	echnical Field Testing Methods	6
		2.4.1	Standard Penetration Tests (SPTs)	6
		2.4.2	Downhole Geophysics	7
	2.5	Hand	lling and Disposal of Investigation-Derived Waste	7
	2.6	Revie	ew and Classification of Soil Samples	7
		2.6.1	Field Observations	7
		2.6.2	Soil Classification System	7
		2.6.3	Sample Review	8
		2.6.4	Exploration Logs	8
	2.7	Non-	Project Borings	8
3	Geo	technic	al Laboratory Testing	8
	3.1	Geote	echnical Index Tests	9
		3.1.1	Sample Preparation and Handling	9
		3.1.2	Classification	9
		3.1.3	Water Content Determination	9
		3.1.4	Grain Size Analyses	10
		3.1.5	Atterberg Limits Determination	10

EW SHANNON & WILSON, INC.

4	Sub	surface Conditions	11
	4.1	Soil Conditions	12
	4.2	Groundwater Conditions	14
5	Refe	erences	14

Exhibits

Exhibit 1-1: 2001 Nisqually Earthquake SODO Liquefaction (PEER, 2001) and Array	
Location	2

Figures

Figure 1: Vicinity MapFigure 2: Site and Exploration PlanFigure 3: Profile Legend and Geologic Unit ExplanationFigure 4: Generalized Subsurface Profile

Appendices

Appendix A: Project Exploration Logs Appendix B: Downhole Geophysics Appendix C: Geotechnical Laboratory Testing Appendix D: Non-Project Information Important Information

1 INTRODUCTION

This geotechnical data report (GDR) describes the geotechnical borings, in situ and laboratory testing data, and the subsurface conditions at the United States Geological Survey (USGS) Stanford Center liquefaction monitoring array. The array consists of three downhole seismometers and six piezometers. The purpose of the array is to provide ground motion and porewater pressure information at various depths within a thick sequence of potentially liquefiable Holocene-age fill, alluvium, and estuarine deposits in the South Downtown (SODO) area of Seattle. The ground motion and porewater pressure data will be collected by USGS to develop a better understanding of the liquefaction potential of the SODO-area Holocene soils.

The array is located in the parking lot of the Seattle School District's John Stanford Center, at 2445 Third Avenue South (Figure 1). This site was selected for the array because:

- Much of SODO and this site is underlain by relatively loose Holocene fill, estuarine, and alluvial deposits of the Duwamish River delta.
- Historic reports of liquefaction in SODO and the Duwamish River Valley during the 1949 Olympia, 1965 SeaTac, and 2011 Nisqually earthquakes.
- Liquefaction around the array site during the 2001 Nisqually Earthquake (Exhibit 1-1).

Exhibit 1-1: 2001 Nisqually Earthquake SODO Liquefaction (PEER, 2001) and Array Location

1.1 Purpose and Scope

This GDR describes and provides the geotechnical borings, in situ and laboratory testing data, and the subsurface conditions at the liquefaction monitoring array (Figure 2). Nine borings were drilled to depths of 23 to 201 feet to characterize the subsurface conditions and install the array instrumentation; three borings were completed for downhole seismometer installation and six were completed with piezometers. The array borings were drilled for the USGS by Gregory Drilling, Inc., of Redmond, Washington, under subcontract to the USGS. Shannon & Wilson provided field coordination, drilling/installation observation, piezometer development and readings, geotechnical laboratory testing, and a characterization of the subsurface conditions at the array. Fulcrum Consulting, of Groveland, California, performed downhole video logging of the completed piezometers

and installed the instrumentation in the piezometer and seismometer borings. The Seattle School District maintenance department provided assistance throughout the array installation process.

Shannon & Wilson also provides in Appendix D of this GDR the logs of nearby Seattle Monorail Project (SMP) field explorations and other data related to selected nearby field explorations.

1.2 Content and Organization of Geotechnical Data Report (GDR)

The GDR contains four sections: (a) Introduction, (b) Subsurface Explorations and Testing, (c) Geotechnical Laboratory Testing, and (d) Subsurface Conditions. The collected data are presented in figures, tables, logs, and appendices.

1.3 Limitations

This report presents data from field explorations, including the results of field and laboratory testing of subsurface conditions and samples at the specific locations and depths indicated, using the means and methods described in this report. No other representation is made. This report contains characterizations and interpretations of the subsurface conditions encountered in the explorations, field and laboratory tests, professional opinions, and local experience. The subsurface characterization and interpretations contained herein cannot be construed as a guarantee or warranty of subsurface conditions.

This report also includes reference data that were not specifically collected for this project. These reference data include exploration logs and associated field and laboratory data collected by Shannon & Wilson for the SMP. These data are provided as reference information only, and they are not considered part of the contractual portion of this study.

2 SUBSURFACE EXPLORATIONS AND TESTING

The subsurface exploration program included the drilling and sampling of nine soil borings, the installation of six piezometers and three seismometer casings, and the development of the piezometers. We did not perform a survey of the completed borings; however, we made measurements of the array borings in relationship to other site features. We estimated the elevation of the array (approximately 18 feet) based on a previous survey of nearby SMP boring SD-122. The approximate ground elevation is referenced to the North American Vertical Datum of 1988 (NAVD 88). Figure 2 displays the approximate locations of the array elements and boring SD-122. Table A-1 summarizes additional details for the explorations performed for this project.

This section includes a description of the drilling and sampling methods and other field procedures used to perform the subsurface explorations. Results of the explorations are included in Appendix A of this report.

2.1 Drilling Methods

The drilling was performed by Gregory Drilling, Inc., under subcontract to the USGS. Shannon & Wilson coordinated and observed the installation of the array borings under subcontract to the USGS. Shannon & Wilson's field representatives also collected soil samples and prepared preliminary field logs of the explorations.

Gregory Drilling completed the borings between December 4 and 21, 2010. The explorations were drilled using mud rotary drilling techniques, with the exception of shallow piezometer boring P-1, which was completed using hollow-stem auger drilling techniques. The drilling method and completion dates for each exploration are indicated on the boring logs and in Table A-1. The following sections describe the drilling methods that were used.

2.1.1 Mud Rotary Drilling

Gregory Drilling performed mud rotary drilling using a CME 75 truck-mounted drill rig, equipped with tricone bits ranging from approximately 6 to 8 inches in diameter. The upper approximately 4 to 5 feet of each mud rotary boring was first advanced using a 9-inch outside-diameter (O.D.) hollow-stem auger. The mud rotary drilling used bentonite drilling mud to carry soil cuttings up the borehole; the mud helped to maintain borehole stability and reduce the potential for soil heave at the borehole bottom. Soil samples were obtained by replacing the tricone bit with a split-spoon sampler (used in conjunction with a Standard Penetration Test [SPT]).

2.1.2 Hollow-Stem Auger Drilling

Gregory Drilling advanced boring P-1 using hollow-stem auger drilling techniques, using a CME 75 truck-mounted drill rig. The technique involved advancing a 9-inch O.D., 4-¹/₄-inch inside diameter (I.D.) hollow-stem auger with a center plug in place to block slough from entering the auger. A soil sample was obtained by replacing the center plug with a split-spoon sampler (used in conjunction with an SPT). Following retrieval of the split-spoon sample, the center plug was placed back in the auger, and the auger was advanced to the bottom of the boring. No soil heave occurred during drilling at boring P-1.

2.2 Soil Sampling Methods

Soil samples were collected from each exploration for purposes of geologic evaluation and geotechnical testing. Split-spoon samplers were used in each of the borings. Split-spoon

soil samples were obtained using a standard, 2-inch O.D., 18-inch split-spoon sampler (without a liner) in conjunction with the SPT. A discussion of the SPT is included in Section 2.4.1.

2.3 Piezometer and Seismometer Casing Installation

Wells with short-screened intervals (piezometers) or blank casings (seismometers) were installed in each of the borings. The installation details for the piezometers and seismometer casing installed for this study are summarized in Table A-1 and on the boring logs.

2.3.1 Piezometer Installation

For this study, Gregory Drilling constructed each piezometer using threaded, 2-inch I.D., polyvinyl chloride (PVC) well casing with a slotted portion (screen) to allow for inflow of water. The width of the screen slots was 0.010 inch (No. 10 slot), and each screen length was approximately 0.9 foot. An end cap, or sump, approximately 0.7 foot in length, was attached to the bottom of each piezometer screen. A filter pack consisting of No. 10-20 Colorado silica sand was used around each screen. We selected the installation depth for each screen based on soil units encountered in the boring in coordination with the USGS.

2.3.2 Seismometer Casing Installation

Gregory Drilling constructed each seismometer casing using threaded, 4-inch I.D., PVC blank well casing. An end cap was attached to the bottom of each casing. Each seismometer casing was grouted in place using tremied bentonite-cement grout.

2.3.3 Piezometer Development

The drilling process disturbs native sediments and typically results in a residual coating of fine sediment that clogs the pore spaces at the borehole wall and within the screen and filter pack of a newly installed piezometer. Disturbed sediment from the drilling process also typically settles out of the water column within a newly installed piezometer, often filling a portion of the casing and screen. This accumulated sediment can potentially inhibit the hydraulic connection between the piezometer and the surrounding soils. Therefore, we developed the six piezometers with the goal of removing the fine sediment from the screens, sumps (blank pipe below the screen), and borehole wall, thereby opening pore spaces and improving the hydraulic connection with the surrounding aquifer soils.

A Shannon & Wilson hydrogeologist developed the piezometers by surge blocking and pumping, using a hand-actuated, check-valve-type, inertial pump (Waterra) that consisted of an acetal plastic check valve attached to high-density polyethylene tubing. An acetal

surge block was attached to the check valve to facilitate the rapid movement of water back and forth through each piezometer screen during the development process. For each piezometer, development continued until the accumulated sediment had been removed from the casing and screen. Each piezometer was developed on September 27, 2011. At the request of Fulcrum, we performed additional development on February 21, 2012, at piezometer P-5, in order to clear murky water from the screen. A summary of piezometer development activities is presented in Appendix A, Table A-2. Additionally, we and Fulcrum independently observed that the seismometer casings were clear of sediment using a weighted measuring line.

2.3.4 Groundwater Monitoring

A Shannon & Wilson hydrogeologist measured groundwater levels in the six piezometers using an electronic water level indicator. Groundwater readings are presented on the boring logs and in Table A-2 in Appendix A; they are presented as depths below final grade. Water levels prior to piezometer development were similar to those measured following development, so they are included in Table A-2. For the previous explorations associated with the SMP, groundwater levels obtained by Shannon & Wilson are included in Appendix D both on the generalized subsurface profile and on the boring logs.

2.4 Geotechnical Field Testing Methods

Geotechnical field testing for this project included SPTs in each boring, downhole geophysics in two of the completed seismometers, and downhole video logging in each of the completed piezometers. These tests were performed to check the piezometer screens for sediment and to evaluate soil density, soil modulus, soil compression and shear wave velocity, and other related soil parameters.

2.4.1 Standard Penetration Tests (SPTs)

SPTs were performed in accordance with ASTM Designation: D 1586, Test Method for Penetration Test and Split-Barrel Sampling of Soils, but without a liner. In the SPT, a 2-inch O.D., 1.375-inch I.D., split-spoon sampler is driven with a 140-pound hammer, falling freely from a height of 30 inches. The number of blows required to achieve each of three 6-inch increments of sampler penetration is recorded. The number of blows required to cause the last 12 inches of penetration is termed the Standard Penetration Resistance or N-value. When penetration resistances exceeded 50 to 100 blows for 6 inches or less of penetration, the test was terminated and the number of blows along with the penetration distance was recorded on the boring log. The presence of gravels or cobbles larger than the sampler may impact measured penetration resistances and result in artificially high values. A soil sample is collected in conjunction with the test. The results of the SPTs are provided in the exploration logs included in Appendix A and on the Generalized Subsurface Profile (Figure 4). A Profile Legend and Geologic Unit Explanation is provided as Figure 3.

2.4.2 Downhole Geophysics

Fulcrum performed suspension shear and compressional wave velocity measurements in borings S-2 and S-3, under subcontract to the USGS. Fulcrum also performed natural gamma logging in boring S-3. The primary purpose of this testing was to obtain estimates of the soil shear and compression wave velocities and to assist in identifying transitions between stratigraphic units.

Fulcrum performed this work after the PVC casings had been grouted in place. The test results and a description of the procedures used for collecting the downhole measurements are included in Fulcrum's report, presented in Appendix B. The shear wave velocity test results are also included on the boring logs in Appendix A.

Shear and compression wave velocity measurements were also made in SMP explorations SD-110 (suspension shear and compression) and SD-203/203A (shear) within 300 feet of the array. These measurements are included in Appendix D.

2.5 Handling and Disposal of Investigation-Derived Waste

The drilling waste (drilled soil cuttings, drill mud, and groundwater) was contained in a roll-off container that was periodically emptied by Bravo Environmental of Tukwila, Washington, and removed from the site for proper disposal. No sign of contamination was apparent during the array installation process.

2.6 Review and Classification of Soil Samples

2.6.1 Field Observations

The borings were observed by a Shannon & Wilson field hydrogeologist who collected, classified, stored, and transported soil samples and prepared logs of the explorations. In addition to observing and collecting soil samples, the field hydrogeologist also noted drill action, problems during drilling or installation, and other issues.

2.6.2 Soil Classification System

Soil classification for this project was based on ASTM Designation: D 2487, Standard Test Method for Classification of Soil for Engineering Purposes, and ASTM Designation: D 2488, Standard Recommended Practice for Description of Soils (Visual-Manual Procedure). The system is called the Unified Soil Classification System (USCS) and is summarized in Figure A-1.

2.6.3 Sample Review

The jar samples obtained from the borings were returned to the Shannon & Wilson laboratory, where they were reviewed by Shannon & Wilson geologists, who selected samples for geotechnical laboratory testing.

2.6.4 Exploration Logs

The logs for the current project explorations are presented in Appendix A. A log is a written record of the subsurface conditions encountered in the exploration. It shows the soil layers encountered in the exploration and the USCS symbol of each layer. The logs presented in Appendix A include a graphical depiction of the uncorrected blow counts measured in the penetration tests as well as results of selected laboratory index tests. These index tests include natural water content, percent fines (particle sizes less than 0.075 millimeter [mm]), and Atterberg Limits (plasticity), which were performed on soil samples at various depths within the boring. Other information shown in the boring logs includes groundwater level measurements, approximate surface elevation, and types and depths of sampling. In boreholes where downhole geophysics testing was performed, the measured shear wave velocities are also shown on the boring logs in Appendix A.

2.7 Non-Project Borings

Shannon & Wilson collected historic subsurface information in the vicinity of the array. These included previous explorations performed by Shannon & Wilson for the SMP. Copies of maps, a profile, and other data associated with selected SMP explorations are included in Appendix D. Appendix D contains detailed exploration logs, geotechnical laboratory data, and geophysical data for selected SMP explorations located in the vicinity of the array. The SMP information was excerpted from the SMP 100% Draft Geotechnical Data Report (Shannon & Wilson, 2003), Addendum No. 095-1 to the SMP Draft GDR (Shannon & Wilson, 2004c), the SMP 100% Draft Geotechnical Characterization Report (GCR) (Shannon & Wilson, 2004a), Addendum No. 110-1 to the SMP GCR (Shannon & Wilson, 2004d), and Addendum No. 110-5 to the SMP GCR (Shannon & Wilson, 2004e).

3 GEOTECHNICAL LABORATORY TESTING

Samples were transported from the field to our laboratory in accordance with ASTM Designation: D 4220, Standard Practices for Preserving and Transporting Soil Samples. The

following sections present discussions of the geotechnical index tests. The results of the geotechnical laboratory tests for the current explorations are presented in Appendix C and summarized in the appendix Table C-1.

3.1 Geotechnical Index Tests

Laboratory index tests were performed on the soil samples retrieved from the borings in accordance with ASTM standards. The laboratory testing program was performed to provide data for engineering studies and to classify the materials into similar geologic groups. Classification and index laboratory tests include visual classification and tests to determine natural water content, grain size distribution, and plasticity.

3.1.1 Sample Preparation and Handling

Jar samples were stored in cardboard boxes and logged into the Shannon & Wilson laboratory for tracking and testing. Shannon & Wilson geologists examined and classified the soil samples and assigned laboratory testing in accordance with our scope of services.

3.1.2 Classification

According to the USCS, coarse-grained soils (greater than 50 percent coarser than 0.075 mm) are classified based on particle-size distribution. Fine-grained soils (greater than 50 percent finer than 0.075 mm) are classified based on Atterberg Limits. A summary of this classification system is shown in Figure A-1 in Appendix A. Classification of the samples was based on ASTM Designation: D 2487, Standard Practice for Classification of Soils for Engineering Purposes, and ASTM Designation: D 2488, Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). These classification methods allow for convenient and consistent comparison of soils from widespread geographic areas. Visual classifications were checked by the results of the index testing when performed.

3.1.3 Water Content Determination

The water contents of the samples retrieved from the explorations were determined in accordance with ASTM Designation: D 2216, Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. The water contents are shown graphically on the exploration logs presented in Appendix A and are also summarized in Table C-1.

In a small number of cases, a soil sample to be tested was found to have dried due to a poor seal on the storage jar. The water contents for samples that appeared desiccated were not reported on the exploration logs in Appendix A or in the figures or table in Appendix C.

3.1.4 Grain Size Analyses

The grain size distribution of selected samples was determined in accordance with the ASTM Designation: D 422, Standard Test Method for Particle-Size Analysis of Soils. Two procedures were used to determine the grain size distribution of soil, including sieve analysis and combined analysis (sieve analysis and hydrometer analysis).

Grain size analysis results could potentially be affected by drilling method (hollow-stem auger versus mud rotary). Additionally, the I.D. of the SPT sampler directly impacts the maximum particle size that can be sampled. For example, the largest diameter particle that can be sampled by a 2-inch SPT sampler (1.375-inch I.D.) is approximately 1.3 inches, regardless of the maximum particle size of the soil unit being sampled. The drilling method can also potentially impact grain size analysis data. During mud rotary drilling, drilling mud can infiltrate open deposits of sand and gravel. This process can affect the sample by "cleaning" the sample (removing fines), adding bentonite clay (contained in the drilling mud) to the sample, or varying degrees of both. Field staff removed drilling mud from mud rotary borings to the extent practical; however, it is often impossible to completely clean the sample.

Grain size analysis results are presented as grain size distribution curves in Appendix C. The result of tests performed during previous exploration phases are presented in Appendix D. Each gradation sheet provides the USCS group symbol, the sample description, water content (unless the sample appeared to be desiccated), and the Atterberg Limits (if performed). The USCS for samples with fewer than 50 percent fines (smaller than 0.075 mm) were classified in accordance with ASTM Designation: D 2488, Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). Summaries of the test results (presented as the percent gravel, sand, and fines) from the project borings are included in Table C-1. The percent passing the No. 200 sieve (0.075 mm) are also shown on the exploration logs in Appendix A. Summaries of the results (presented as the percent gravel, sand, and fines) from nearby non-project borings are included in Appendix D.

3.1.5 Atterberg Limits Determination

Soil plasticity was determined by performing Atterberg Limits tests on selected fine-grained samples or samples with greater than 50 percent passing the No. 200 sieve. The tests were performed in accordance with ASTM Designation: D 4318, Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. The Atterberg Limits include Liquid Limit (LL), Plastic Limit (PL), and Plasticity Index (PI=LL-PL).

The LL, PL, and PI values determined from the Atterberg Limits tests are summarized in Table C-1 and are shown in plasticity charts included in Appendix C. The result of tests

performed for the SMP are presented in Appendix D. The plasticity charts provide the USCS group symbol, the sample description, water content, and percent passing the No. 200 sieve (if a grain size analysis was performed). The results of the Atterberg Limits determinations from the array borings are also shown graphically on the boring logs in Appendix A.

4 SUBSURFACE CONDITIONS

Troost and others (2005) map the SODO area where the array is located as an anthropogenic-filled tidal estuary where the Duwamish River delta extends into Elliott Bay. The delta is in a pre-existing glacial trough that was carved into glacially overridden soils deposited during previous glacial and interglacial episodes. The trough has been subsequently filled with predominantly Holocene estuarine and alluvial sediments deposited as the mouth of the Duwamish River has prograded northward in the trough since the retreat of the last glacial incursion. Based on subsurface explorations in the SODO area, the top of glacially overridden soil is deepest at 255 feet below grade or about elevation -215 feet, in the vicinity of Colorado Avenue S., which is about 3,000 feet southwest of the array.

Our interpretation of subsurface conditions in the vicinity of the liquefaction array is shown in the Generalized Subsurface Profile, Figure 4. Our characterization of the subsurface geology and conditions is based primarily on soils encountered in the borings performed for the array installation (P-1 through P-6 and S-1 through S-3) and nearby SMP boring SD-122; these borings are shown in Figure 4. A generalized subsurface profile developed for the SMP GCR is included in Appendix D (Figure 5, sheet 17 of 50). Only borings that we considered to have useful and reliable data are shown in these profiles.

For the SMP, we collected and considered for inclusion in our evaluation of subsurface conditions the logs of previous borings drilled for other projects near the SMP alignment. Among these previous explorations are eight shallow Geoprobe borings that were completed within about 100 feet of the liquefaction array site; these are indicated on the SMP GCR site plan (Appendix D, Figure 3, sheet 17 of 50). These eight shallow borings were completed to depths of about 5 to 7.5 feet deep and are designated on the SMP GCR site plan as 414-3847 through 414-3851, 414-3854, 414-3855, and 414-3883. Information regarding these shallow borings is available in a report prepared by Dames & Moore (1998). Apparent from the SMP GCR site plan (Appendix D) and the array site plan (Figure 2) is that sometime between 2004 and 2010, the west boundary fence of the Seattle School District site was relocated to the east in order to accommodate expansion of the adjacent rail lines; railroad tracks now occupy the location of the abandoned SMP boring SD-122. During this

time period, the westward extent of the Seattle School District maintenance shop was also reduced.

The discussion below summarizes our interpretation of subsurface conditions and geologic units. Additional details regarding the subsurface conditions encountered in the vicinity of the array are included in the logs of the array borings and nearby SMP borings, presented in Appendices A and D, respectively. In addition to the stratigraphy and soil characteristics, groundwater conditions are discussed for the array vicinity. A description of the site geology and subsurface conditions excerpted from the SMP GCR is also provided in Appendix D.

4.1 Soil Conditions

Soils underlying the array consist of a thick sequence of recent fill (Hf), alluvium (Ha), and estuarine (He) deposits that are very loose to dense and very soft to stiff. These deposits are typically underlain by very dense or very stiff to hard, Holocene beach (Hb) or reworked glacial soils (Hrw), Vashon glacial recessional soils, or pre-Vashon glacially overridden soils. The depth to the very dense soils ranges from about 175 to 177 feet (about elevation -157 to -159 feet) at array borings S-3 and P-6, respectively, and about 191 feet (elevation -173 feet) at SMP boring SD-122.

In the vicinity of the array, we have interpreted the encountered glacially overridden soils to consist largely of pre-Vashon glaciolacustrine deposits (Qpgl) overlain by interbedded pre-Vashon glacial outwash (Qpgo) and till (Qpgt). The Qpgl deposits are comprised of very stiff to hard, silty clay to clayey silt with minor amounts of sand and gravel. The Qpgo deposits consist of very dense, slightly silty to silty sand to sandy gravel/gravelly sand with minor amounts of silt. The Qpgt deposits consist of very dense, slightly solution of very dense, sandy, gravelly silt to hard, slightly sandy, slightly gravelly, clayey silt.

The glacially overridden soils are overlain by a soil layer up to about 10 feet thick that is less dense or softer than the underlying glacially overridden soils. This layer represents a transition from the glacially overridden deposits to the overlying He and Ha deposits. This transition layer is comprised of soils that we have interpreted to be Vashon recessional glacial deposits (Qvrl), Hrw, and Hb deposits, none of which are glacially consolidated. These deposits range from very soft to very stiff, silty clay with varying amounts of sand and gravel to very loose to very dense, sandy gravel/gravelly sand with varying amounts of silt and clay.

Most of the non-glacially overridden soils filling the trough consist of recent He and Ha deposits. The sequence of deposits grades from predominantly fine-grained cohesive He soils at the base to Ha sand deposits near the top. In the array vicinity, He soils at the base

of these recent deposits are in contact with the Hrw, Hb, and/or glacial soils between about elevations -155 (boring S-3) and -164 (boring SD-122) feet. These deep He soils consist primarily of very soft, trace to slightly fine sandy, clayey silt with trace to scattered fine organics and shell fragments. Sand and sandy silt layers are present within this zone near the base of the He soils.

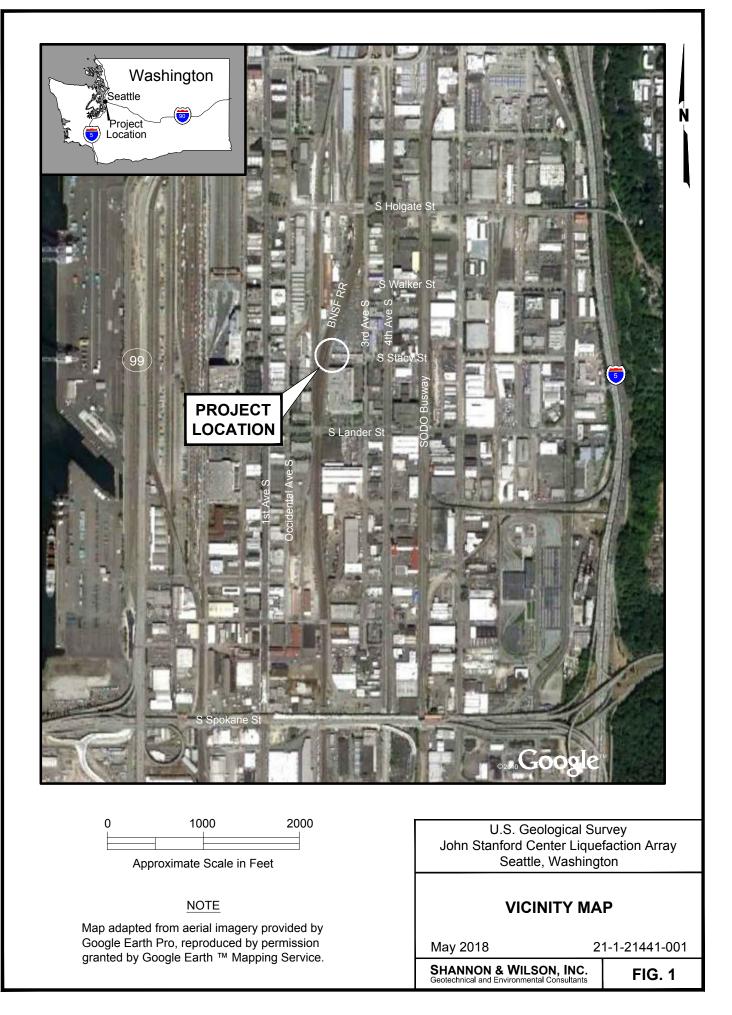
Array borings encountered He soils situated between about elevations -130 and about -113 (boring P-5) to -117 (boring S-3) feet. These soils are typically less plastic than the deeper He soils, consisting of loose to medium dense, slightly sandy to sandy silt, trace of clay, trace to scattered fine organics and shells, and interbedded with silty, fine sand.

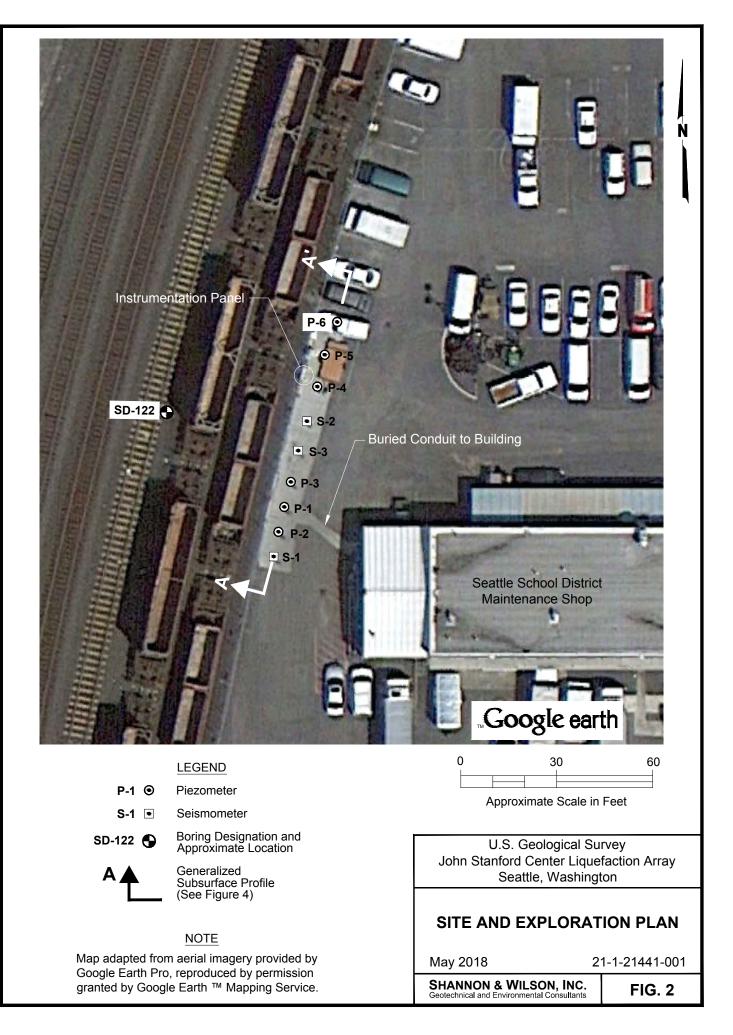
Above the He soils, the array explorations encountered mixed Ha and He soils up to about elevation -60 (boring P-5) to -62 (boring S-3) feet. The Ha/He soils consist predominantly of interbedded very loose to loose, slightly fine sandy to fine sandy silt, trace of clay, and loose to dense, trace of silt to silty, fine sand. We observed trace to scattered fine organics and shell fragments throughout these soils.

The native soils above the He/Ha layer consist largely of Ha with scattered seams and layers of He soils. The top of the Ha deposits is situated between about elevations +1 and -3 feet at the base of the overlying Hf deposits. Like the underlying Ha/He soils, the Ha soils were likely deposited in a deltaic environment and reworked by tidal processes and meandering streams, resulting in laterally discontinuous lenses of alluvial and estuarine soils. The Ha soils predominantly consist of loose to dense, trace of silt to silty, fine and fine to medium sand with trace to scattered organics and shell fragments. The He seams and layers interbedded within the Ha unit consist of silt with trace clay and fine sandy silt.

The surficial soils underlying the array consist of approximately 17 to 21 feet of fill (Hf). Mixing of Hf, Ha, and He soils may have occurred, at least within the upper foot or so of the Ha or He deposits, based on soils observed in boring P-5. The lower fill soils at the array consist of about 9 to 10 feet of very soft, silty clay with trace to scattered wood, fine organics, shells, and sand seams. This clay is overlain by about 6 feet of very loose to loose, fine sandy silt, trace of clay and shell fragments. Above the silt, the explorations encountered about 2 to 3 feet of silty, sandy gravel, which may have been placed as railroad ballast. The ground surface was paved with about 0.5 to 1 foot of asphalt prior to the start of the array explorations.

The fill in the SODO area was placed primarily between 1895 and 1902 on the tide flats in order to raise the grade from near sea level to its current elevation of approximately 18 feet. Fill was placed using a variety of methods and materials. Evidence of fill soils at the array was encountered as deep as 21 feet (coal and clinker mixed with Ha sand, boring P-5).

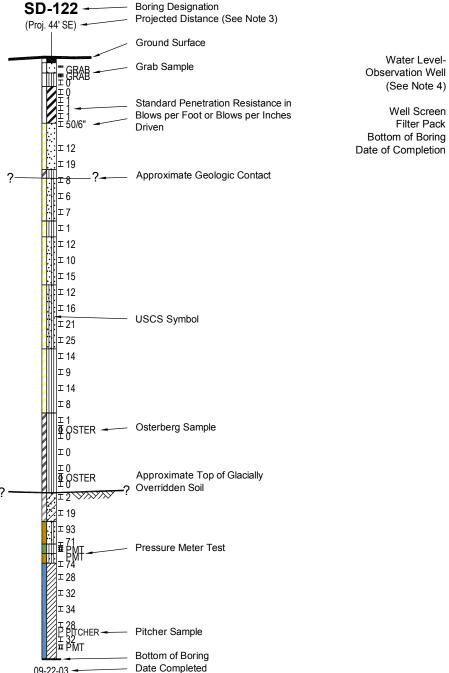

4.2 Groundwater Conditions


The array borings encountered saturated soils starting at about 5 to 7 feet below ground surface. Table A-2 in Appendix A presents the groundwater levels we measured in the six piezometers; groundwater levels vary between about 6 and 8 feet below the existing ground surface at the piezometers. Based on the measurements we obtained at the piezometers, seasonal and/or tidal variation in the depth to groundwater is at least 1.5 feet.

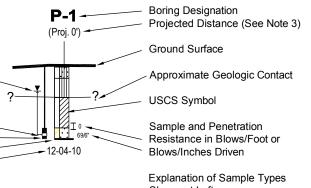
5 REFERENCES

- ASTM International (ASTM), 2010, Annual book of standards, construction, v. 4.08, soil and rock (I): D 420 D 5876: West Conshohocken, Pa., ASTM International.
- Dames & Moore, 1998, Soil and groundwater investigation, USPS General Mail Facility, Seattle, Washington: Report prepared by Dames & Moore, Seattle, Washington, 39529-001-005, for Lowe Enterprises Northwest, Inc., July 17.
- Fulcrum Consulting, 2012, Boring geophysics in borings S-2 and S-3, USGS Stanford Center liquefaction array, Seattle, Washington: Report prepared by Fulcrum Consulting, Groveland, California, report 12073 rev 1, for United States Geologic Survey, October 8.
- Pacific Earthquake Engineering Research Center (PEER), 2001, Some observations of geotechnical aspects of the February 28, 2001, Nisqually earthquake in Olympia, South Seattle, and Tacoma, Washington, soil liquefaction and ground failure: Berkeley, Calif., University of California, PEER, available: http://peer.berkeley.edu/publications/nisqually/geotech/liquefaction/distribution/i ndex.html.
- Shannon & Wilson, Inc., 2003, 100% Draft geotechnical data report, Seattle Monorail Project, Seattle, Washington: Report prepared by Shannon & Wilson, Inc., Seattle, Washington, 21-1-09910-091, for Bechtel/Jacobs, December 23.
- Shannon & Wilson, Inc., 2004a, 100% Draft geotechnical characterization report, Seattle Monorail Project, Seattle, Washington: Report prepared by Shannon & Wilson, Inc., Seattle, Washington, 21-1-09910-111, for Bechtel/Jacobs, January 23.
- Shannon & Wilson, Inc., 2004b, Draft seismic ground motion report, Seattle Monorail Project, Seattle, Washington: Report prepared by Shannon & Wilson, Inc., Seattle, Washington, 21-1-09910-046, for Bechtel/Jacobs, February 5.

- Shannon & Wilson, Inc., 2004c, Report addendum no. 095-1, Geotechnical data report (GDR), Seattle Monorail Project (SMP), Seattle, Washington: Draft report prepared by Shannon & Wilson, Inc., Seattle, Washington, 21-1-09910-090, for Bechtel/Jacobs, April 2.
- Shannon & Wilson, Inc., 2004d, Report addendum no. 110-1, Geotechnical characterization report, Seattle Monorail Project (SMP), Seattle, Washington: Report prepared by Shannon & Wilson, Inc., Seattle, Washington, 21-1-09910-111, for Bechtel/Jacobs, April 2.
- Shannon & Wilson, Inc., 2004e, Report addendum no. 110-5, Geotechnical characterization report, Seattle Monorail Project (SMP), Seattle, Washington: Report prepared by Shannon & Wilson, Inc., Seattle, Washington, 21-1-09910-111, for Bechtel/Jacobs, July 2.
- Troost, K. G.; Booth, D. B.; Wisher, A. P.; and Shimel, S. A., 2005, Geologic map of Seattle a progress report: U. S. Geological Survey Open File Report OF 2005-1252, scale 1:24,000.


GEOLOGIC UNITS

PROFILE LEGEND


ON ORVERRID	DEN	PREVIOUS BORIN
HOLOCENE [DEPOSITS	(By Shannon & Wilson or
Иа На	ALLUVIUM: River or creek deposits, normally associated with historical streams, including deltaic and overbank deposits. Sand, silty Sand, gravelly Sand; very loose to very dense.	SD-122
Hb	BEACH DEPOSITS: Deposits along present and former shorelines of Puget Sound and tributary river mouths. Silty Sand, sandy Gravel, gravelly Sand, wood and shell debris common; loose to dense.	
He	ESTUARINE DEPOSITS: Fine-grained sediments deposited in brackish water associated with rivers and streams located along the present and former Puget Sound shoreline. Clayey Silt, silty Clay, Silt, and fine Sand; organics and shell fragments common; very soft to very stiff or very loose to medium dense.	10 11 11 11 150/6" 11 12 12 12 12
Hf	FILL: Fill placed by humans, both engineered and nonengineered. Various materials, including debris; cobbles and boulders may be common; commonly dense or stiff if engineered, but very loose to dense or very soft to stiff if nonengineered.	?
Hrw	REWORKED GLACIAL DEPOSITS: Glacially deposited soils that have been reworked by fluvial or wave action. Sand, silty Sand, gravelly Sand; lies on top of glacially overridden soils, loose to dense.	x 12 x 10 x 15 x 15 x 12 x 12 x 16 x 16 x 12
QUATERNAR	Y VASHON DEPOSITS	± ⊥ 14
Qvrl	RECESSIONAL LACUSTRINE DEPOSITS: Glaciolacustrine sediment deposited as glacial ice retreated. Fine Sand, Silt, and Clay; dense to very dense, soft to hard.	19 14 18 1
LACIALLY OVE	RIDDEN	₽
	Y PRE-VASHON DEPOSITS	
Qpgl	GLACIOLACUSTRINE DEPOSITS: Fine-grained glacial flour deposited in proglacial lake in Puget Lowland. Silty Clay, clayey Silt, with interbeds of Silt and fine Sand; very stiff to hard or very dense.	?
Qpgm	GLACIOMARINE DEPOSITS: Till-like deposit with clayey matrix deposited in proglacial lake by icebergs, floating ice, or gravity currents. Variable mixture of Clay, Silt, Sand, and Gravel; scattered shells locally; cobbles and boulders common; very dense or hard.	$ \begin{array}{c} \overline{1} \\ \overline{2} \\ \overline{1} \\ \overline{2} \\ \overline{1} \\ \overline{2} \\ \overline{1} \\ \overline{3} \\ \overline{1} $
Qpgo	OUTWASH: Glaciofluvial sediment deposited as the glacial ice advanced or retreated through the Puget Lowland. Clean to silty Sand, gravelly Sand, sandy Gravel; very dense.	09-22-03
Qpgt	TILL: Lodgment till laid down along the base of the glacial ice. Gravelly, silty Sand, silty, gravelly Sand ("hardpan"); cobbles and boulders common; very dense.	

PREVIOUS BORING

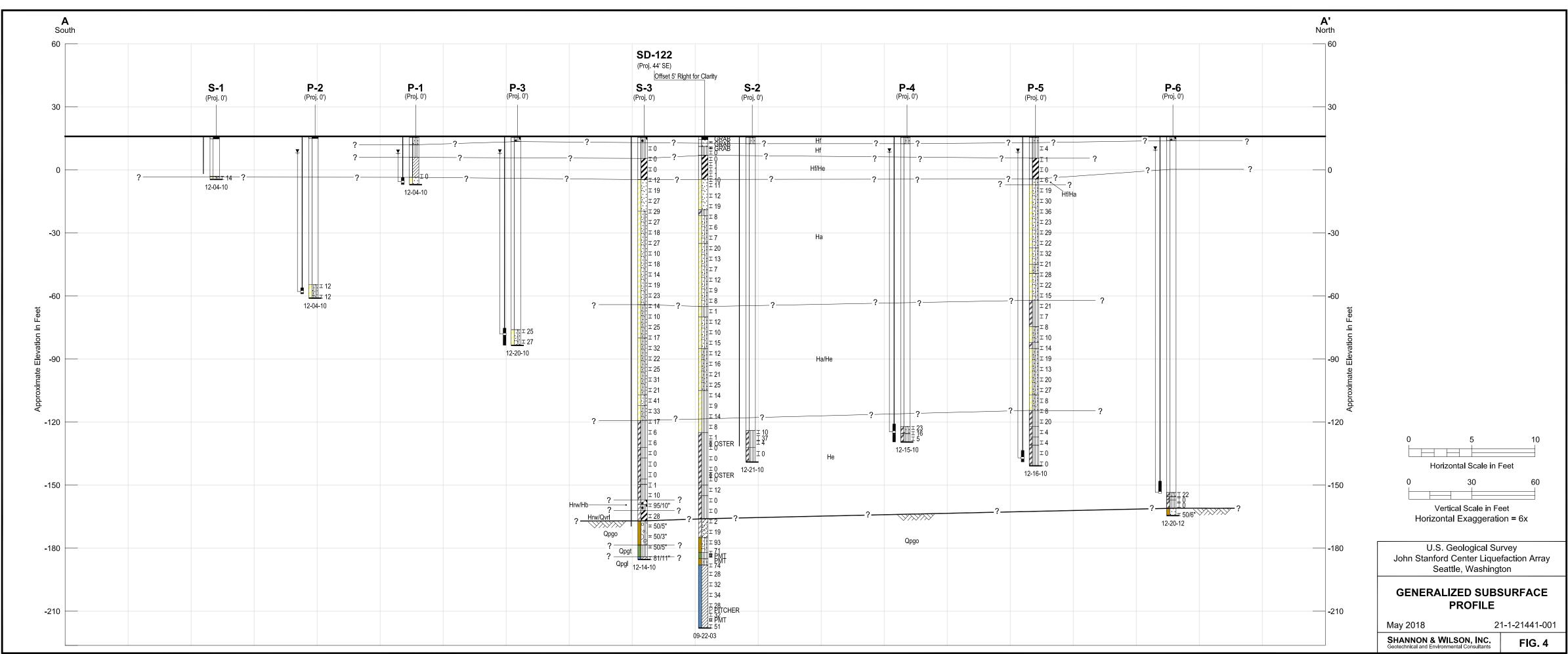
others)

PROJECT BORING

Shown at Left (Length of symbol corresponds to length of sample)

NOTES

- 1. Elevation Datum: North American Vertical Datum 1988 (NAVD88).
- 2. Subsurface conditions shown are generalized from soils encountered in project borings and from logs of borings previously completed for other projects in the vicinity. Variations between the profile and actual conditions may exist.
- 3. Projections are taken from the array alignment.
- 4. See Appendix A, Table A-2, for groundwater fluctuations.
- 5. The description of each geologic unit includes only general information regarding the environment of deposition and basic soil characteristics. See text of report for additional discussion of geologic units.


U.S. Geological Survey John Stanford Center Liquefaction Array Seattle, Washington

PROFILE LEGEND AND **GEOLOGIC UNIT EXPLANATION**

May 2018

21-1-21441-001

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants	FIG. 3
--	--------

APPENDIX A Project Exploration Logs

CONTENTS

- Table A-1: Summary of Piezometer and Seismometer Installation Data
- Table A-2: Summary of Piezometer Development and Groundwater Readings
- Figure A-1: Soil Classification and Log Key (2 sheets)
- Figures A-2 through A-10: Boring Logs

TABLE A-1 SUMMARY OF PIEZOMETER AND SEISMOMETER INSTALLATION DATA

Boring No. ^a	Ecology Tag	Well Installation Date	Drilling ^b Method	Boring Depth (feet)	Estimated Ground Surface and Monument Lid Elevation ^b (feet)	Casing Elevation ^c (feet)	Filter Pack	Bottom of Filter Pack Depth ^d (feet)	Estimated Filter Pack Elevation Range ^c (feet)	Top of Screen Depth ^d (feet)	Bottom of Screen Depth ^d (feet)	Estimated Screen Elevation Range ^c (feet)	Screen Length ^d (feet)	Sump Length ^d (feet)	Casing Depth Below Grade ^d (feet)	Estimated Casing Bottom Elevation ^c (feet)	Approximate Borehole Diameter ^d (inches)	Inside Casing Diameter ^d (inches)
P-1	BBT 892	12/4/2010	HSA	23.0	18	17.8	19.5	23.0	-1.55.0	21.1	22.0	-3.14.0	0.9	0.7	22.7	-4.7	9.0	2
P-2	BBT 893	12/4/2010	MR	77.0	18	17.8	72.0	75.0	-54.057.0	73.4	74.3	-55.456.3	0.9	0.7	75.0	-57.0	6.0	2
P-3	BBT 651	12/20/2010	MR	99.5	18	17.8	91.2	99.5	-73.281.5	93.7	94.5	-75.776.5	0.9	0.7	95.3	-77.3	6.0	2
P-4	BBT 897	12/15/2010	MR	145.5	18	17.6	136.8	145.5	-118.8127.5	140.2	141.1	-122.2123.1	0.9	0.7	141.8	-123.8	6.0	2
P-5	BBT 898	12/16/2010 (Topped off grout on 12/17/2010)	MR	156.8	18	17.6	149.4	155.0	-131.4137.0	152.6	153.4	-134.6135.4	0.9	0.7	154.2	-136.2	6.0	2
P-6	BBT 899	12/20/2010	MR	180.5	18	17.6	164.0	170.0	-146.0152.0	169.0	169.9	-151.0151.9	0.9	0.7	170.6	-152.6	6.0	2
S-1	BBT 894	12/4/2010	MR	20.5	18	17.7		No filter	pack		No	screen		17.6	17.9	0.2	6.3	4
<u>S-2</u>	BBT 896	12/13/2010 (Topped off grout on 12/21/2010) 12/9/2010 (Topped off grout on	MR	155.0	18	17.8	No filter pack		No screen			147.3	147.5	-129.5	8.0	4		
S-3	BBT 895	12/14/2010)	MR	201.4	18	17.8		No filter	pack		No	screen		185.6	185.8	-167.8	6.3	4

Notes:

^(a) Boring No. corresponds to Piezometer No. (for P-1 through P-6) or Seismometer No. (for S-1 through S-3).

^(b) HSA = hollow-stem auger, MR = mud rotary

^(c) Based on the estimated elevation of the ground surface and flush-mounted monument lid at each location. The reference vertical datum is the North American Vertical Datum (NAVD 88).

^(d) Value shown was determined by hand measurements during piezometer/seismometer construction and during piezometer development on 9/27/2011.

SHANNON & WILSON, INC.

TABLE A-2
SUMMARY OF PIEZOMETER DEVELOPMENT AND GROUNDWATER READINGS

Piezometer No.	Ecology Tag	Estimated Ground Surface and Monument Lid Elevation ^a (feet)	Development Dates	Approximate Volume Purged ^b (gallons)	Groundwater Reading Date	Depth to Water Below Grade (feet)	Estimated Groundwater Elevation ^a (feet)
P-1	BBT 892	18	9/27/2011	3	9/27/2011	7.3	10.7
					10/27/2011	8.0	10.0
P-2	BBT 893	18	9/27/2011	3	9/27/2011	7.8	10.2
					10/27/2011	7.9	10.1
P-3	BBT 651	18	9/27/2011	3	9/27/2011	7.8	10.2
					10/27/2011	8.0	10.0
P-4	BBT 897	18	9/27/2011	3.5	9/27/2011	7.0	11.0
					10/27/2011	7.5	10.5
P-5	BBT 898	18	9/27/2011	4.5	9/27/2011	6.5	11.5
			2/21/2012	6.5	10/27/2011	7.6	10.4
					2/21/2012	6.1	11.9
P-6	BBT 899	18	9/27/2011	4.5	9/27/2011	6.7	11.3
					10/27/2011	6.6	11.5

Notes:

^(a) Based on the estimated elevation of the ground surface and flush-mounted monument lid at each location. The reference vertical datum is the North American Vertical Datum (NAVD 88).

^(b) Piezometer development within the screened zone was performed using a hand-actuated, check-valve-type, inertial pump equipped with a surge block.

Shannon & Wilson, Inc. (S&W), uses a soil classification system modified from the Unified Soil Classification System (USCS). Elements of the USCS and other definitions are provided on this and the following page. Soil descriptions are based on visual-manual procedures (ASTM D 2488-93) unless otherwise noted.

S&W CLASSIFICATION OF SOIL CONSTITUENTS

- MAJOR constituents compose more than 50 percent, by weight, of the soil. Major consituents are capitalized (i.e., SAND).
- Minor constituents compose 12 to 50 percent of the soil and precede the major constituents (i.e., silty SAND). Minor constituents preceded by "slightly" compose 5 to 12 percent of the soil (i.e., slightly silty SAND).
- Trace constituents compose 0 to 5 percent of the soil (i.e., slightly silty SAND, trace of gravel).

MOISTURE CONTENT DEFINITIONS

Dry	Absence of moisture, dusty, dry to the touch
Moist	Damp but no visible water
Wet	Visible free water, from below

Wet Visible free water, from below water table

ABBREVIATIONS

GRAIN SIZE DEFINITION

DESCRIPTION	SIEVE NUMBER AND/OR SIZE
FINES	< #200 (0.08 mm)
SAND* - Fine - Medium - Coarse	#200 to #40 (0.08 to 0.4 mm) #40 to #10 (0.4 to 2 mm) #10 to #4 (2 to 5 mm)
GRAVEL* - Fine - Coarse	#4 to 3/4 inch (5 to 19 mm) 3/4 to 3 inches (19 to 76 mm)
COBBLES	3 to 12 inches (76 to 305 mm)
BOULDERS	> 12 inches (305 mm)

* Unless otherwise noted, sand and gravel, when present, range from fine to coarse in grain size.

RELATIVE DENSITY / CONSISTENCY

COARSE-GF	AINED SOILS	FINE-GRAINED SOILS				
N, SPT, <u>BLOWS/FT.</u>	RELATIVE DENSITY	N, SPT, <u>BLOWS/FT.</u>	RELATIVE CONSISTENCY			
0 - 4	Very loose	Under 2	Very soft			
4 - 10	Loose	2 - 4	Soft			
10 - 30	Medium dense	4 - 8	Medium stiff			
30 - 50	Dense	8 - 15	Stiff			
Over 50	Very dense	15 - 30	Very stiff			
		Over 30	Hard			

WELL AND OTHER SYMBOLS

ATD	At Time of Drilling		Bent. Cement Grout	Prove Prove The Prove Prove The Prove Prove	Surfac	e Cement	
Elev.	Elevation				Seal		
ft	feet		Bentonite Grout		Aspha	lt or Cap	
FeO	Iron Oxide		Dontonito China		Claugh		
MgO	Magnesium Oxide		Bentonite Chips	4.4.	Slough	1	
HSA	Hollow Stem Auger		Silica Sand		Bedroo	:k	
ID	Inside Diameter						
in	inches		PVC Screen				
lbs	pounds		\/ibactica.\\/inc				
Mon.	Monument cover		Vibrating Wire				
Ν	Blows for last two 6-inch increments	'					
NA	Not applicable or not available						
NAD	North American Datum (year)						
NAVD	North American Vertical Datum (year)						
NGVD	National Geodetic Vertical Datum (year)						
NP	Non plastic						
OD	Outside diameter						
OVA	Organic vapor analyzer			6. Geologio		,	
PID	Photo-ionization detector		John Stanfo		-	-	
ppm	parts per million		S	eattle, Wa	shingto	n	
PVC	Polyvinyl Chloride						
SS	Split spoon sampler		SOIL	CLASS	IFICA	TION	
SPT	Standard penetration test		A	ND LO	G KE	Y	
USC	Unified soil classification				~		
WOH	Weight of hammer		May 2018		2	1-1-21441-001	
WOR	Weight of drill rods		SHANNON & Geotechnical and Envir	WILSON,	INC.	FIG. A-1 Sheet 1 of 2	

I	MAJOR DIVISIONS	6		GRAPHIC	TYPICAL DESCRIPTION
		Clean Gravels	GW		Well-graded gravels, gravels, gravels, gravel/sand mixtures, little or no fines
	Gravels (more than 50%	(less than 5% fines)	GP		Poorly graded gravels, gravel-sand mixtures, little or no fines
	of coarse fraction retained on No. 4 sieve)	Gravels with Fines	GM		Silty gravels, gravel-sand-silt mixture
COARSE- GRAINED SOILS		(more than 12% fines)	GC		Clayey gravels, gravel-sand-clay mixtures
(more than 50% retained on No. 200 sieve)		Clean Sands	sw		Well-graded sands, gravelly sands, little or no fines
	Sands (50% or more of	(less than 5% fines)	SP		Poorly graded sand, gravelly sands, little or no fines
	coarse fraction passes the No. 4 sieve)	Sands with Fines	SM		Silty sands, sand-silt mixtures
		(more than 12% fines)	SC		Clayey sands, sand-clay mixtures
		Inorganic	ML		Inorganic silts of low to medium plasticity, rock flour, sandy silts, gravelly silts, or clayey silts with sligh plasticity
	Silts and Clays (liquid limit less than 50)	morganic	CL		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays silty clays, lean clays
FINE-GRAINED SOILS (50% or more		Organic	OL		Organic silts and organic silty clays of low plasticity
passes the No. 200 sieve)		Inorganic	МН		Inorganic silts, micaceous or diatomaceous fine sands or silty soil elastic silt
	Silts and Clays (liquid limit 50 or more)	morganic	СН		Inorganic clays of medium to high plasticity, sandy fat clay, or gravelly t clay
		Organic	он		Organic clays of medium to high plasticity, organic silts
HIGHLY- ORGANIC SOILS	Primarily organi color, and c	ic matter, dark in organic odor	PT		Peat, humus, swamp soils with high organic content (see ASTM D 4427)

NOTE: No. 4 size = 5 mm; No. 200 size = 0.075 mm

<u>NOTES</u>

- Dual symbols (symbols separated by a hyphen, i.e., SP-SM, slightly silty fine SAND) are used for soils with between 5% and 12% fines or when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart.
- 2. Borderline symbols (symbols separated by a slash, i.e., CL/ML, silty CLAY/clayey SILT; GW/SW, sandy GRAVEL/gravelly SAND) indicate that the soil may fall into one of two possible basic groups.

U.S. Geological Survey John Stanford Center Liquefaction Array Seattle, Washington

SOIL CLASSIFICATION AND LOG KEY

May 2018

21-1-21441-001

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. A-1 Sheet 2 of 2

Total Depth: 23 ft. Top Elevation: ~ 18 ft. Vert. Datum:	Northing: ~ 215,902 ft. Easting: ~ 1,270,691 ft. Station: ~ Offset: ~	_ Dril _ Dril	ling C I Rig I	lethod ompar Equipn mmen	ny: nent	Gre CM	egory 1E 75 1	F	Hole Diam.: Rod Diam.: Hammer Type	<u>9 in.</u> <u>AWJ 1-3/4"</u> e: <u>Automatic</u>
SOIL DESCE Refer to the report text for a pro subsurface materials and drilling lines indicated below represent to between material types, and the	oper understanding of the methods. The stratification he approximate boundaries	Depth, ft.	Symbol	Samples		Water	Depth, ft.	▲ Hammer W		ANCE (blows/fo 40 lbs / 30 inches 40
ASPHALT		0.5								
Brown, gravelly, silty SAN	D; moist; (Hf) SM.									
Dark gray, slightly sandy, moist to wet; (Hf) ML. (Se boring S-3 for additional s above 18 feet.)	ee log of nearby	4.0	<u></u> .		11 1▲		5			
					27/20					
Very soft, gray, silty CLAY	; wet; with abundant	10.0			10/2		10			· · · · · · · · · · · · · · · · · · ·
seams of black, silty, fine slightly clayey, slightly sar abundant fine organics, so fragments; (Hf/He) CL.	sand and dark gray, ndy silt, scattered to									
							15			
Loose, black, fine to medi silt; wet; (Ha/Hf) SP.	um SAND, trace of	19.5		1			20	0/18" (WOH)	•	•
					[.	·E-				
		23.0								
BOTTOM OF		23.0						: : : : : : : : : :		
COMPLETED Notes:	12/4/2010						25			
1. Contacts above the sa	mpling zone were						25			
estimated based on adjac										
and drill action.										
 Driller used hollow ster techniques; no heave was 										
teeninques, no neave was	s encountered.									
 * Sample Not Recovered _ Standard Penetration Test 1. Refer to KEY for explanation of 2. Croundwater level if indicated 	-	e-Cemer e Chips// e Grout Water Le and defi	nt Grou Pellets evel in N	t Well	ilter		Joh	 ♦ Plastic Lim Na U.S. Geo n Stanford Cet 	tural Water C logical Surv	Content Liquid Limit Content ey ction Array
 Groundwater level, if indicated USCS designation is based on The hole location was measure approximate. 	visual-manual classification and	l selecte	d lab te	-	I	м	ay 20	LOG OF		F-1
							-	NON & WILS		FIG. A-2

	Total Depth: 77 ft. Northing: ~ 215,894 ft. Top Elevation: ~ 18 ft. Easting: ~ 1,270,690 ft. Vert. Datum: Station: ~ Horiz. Datum: Offset: ~	_ Drill _ Drill	ing C Rig E	lethod: ompan Equipm mment	y: ient:	Gree CME			Hole Diam.: Rod Diam.: Hammer Typ	6 in. <u>NWJ 2-5/8"</u> e: <u>Automatic</u>
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water	Depth, ft.			ANCE (blows/foot) 40 lbs / 30 inches 40 60
	ASPHALT with incorporated railroad ballast. School district removed these, then placed gravel to 0.5 foot below ground surface. See logs of nearby borings P-1, S-1, S-2, and S-3 for soil descriptions above 70.5 feet.	- 1.0					5			
					10/27/2011		10			
							15			
							20			
Log: PVH Rev: PHZ Typ: CLP							25			
	CONTINUED NEXT SHEET LEGEND LEGEND ★ Sample Not Recovered □ □ □ Piezome ⊥ Standard Penetration Test □ □ Bentonit □ Standard Penetration Test □ □ Bentonit □ □ Bentonit □ Bentonit	e-Cemen e Chips/F	t Grou					Plastic L	20	Content Liquid Limit
MASTER_LOG_E 21-21441.GPJ SHAN_WIL.GDT 5/3/18	NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviations 2. Groundwater level, if indicated above, is for the date specified	Water Le and defir	nitions.				Joh	n Stanford C	eological Surv enter Liquefa e, Washingto	action Array
0G_E_21-214	 Oronavate level, in induced above, is for the date specified and may vary. USCS designation is based on visual-manual classification and selected lab testin The hole location was measured from existing site features and should be consider approximate. 					Ma	ay 20			6 P-2 1-1-21441-001
MASTER_L							-	NON & WIL		FIG. A-3 Sheet 1 of 3

·	Northing: ~ 215,894 ft.			lethod:		d Rota	ry			_	Hole			<u> </u>				
·	Easting: <u>~ 1,270,690 ft.</u> Station: ~			ompany: Equipmen		egory E 75 1	ruck	<			Rod I Hami					itoma		
	Offset: ~		-	mments:		ISA to												
SOIL DESCRIF Refer to the report text for a prope subsurface materials and drilling me lines indicated below represent the	r understanding of the thods. The stratification	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.											ws/foot ches	
between material types, and the tra				0			0			2	20			4(0		6	
								:::		::			:: ::			: :		
										::			::: :::			:::	· · · · · ·	
						35				:: ::			<u> </u>					
							::	: : :		: : : :		: : : : : :	····· : :		···· : :	:::		
										:::								
						40												
										::			::			:::		
								:::		:: ::			:::		÷	:::		
							::	:::		<u>.</u>			<u>.</u>	::		:::		
						45	::	:::		<u>.</u>			<u> </u>	<u>.</u>	<u> </u>	:::		
						10												
						50		:::		::		:::	<u>.</u>	:::		:::	::::	
																:::		
							::	:::		::			:: ::	:::		:::	· · · · ·	
										: :::						:::		
						55	::	:::		<u></u> :::		<u></u>	 	÷ : : : : : : : : : : : : : : : : : : :		:::		
- Possible SILT layer at app																		
60 feet, based on drill acti	on.																	
										::								
CONTINUED NE	XT SHEET																	
	<u>LEGEND</u>						0				20			4(60	
* Sample Not Recovered	<u> </u>			Sand Filter							% %							
Standard Penetration Test	Bentonite			t				Pla	stic	Lim	nit 🖡)	l L	iqui		nit	
	Bentonite									Na	itural	Wa	ter (Conte	ent			
	⊈ Ground \	Vater Le	vel in \	Nell							logio							
						Joh	n St				nter Wa	-			on A	Array	/	
1. Refer to KEY for explanation of sy	NOTES mbols, codes, abbreviations	and defir	nitions.		—				beat	ue,	vva	5111	iyiu					
2. Groundwater level, if indicated ab	ove, is for the date specified	and may	vary.					~~	_	-				. –				
 USCS designation is based on vis The hole location was measured f 				-			L	JG	i U		BO	RI	NĠ	iΡ	-2			
approximate.	one of one reaction of the				М	ay 20	18						2.	1-1-1	214	41-	001	
						-			18.0		<u></u>	IN!/						
							al and	N & Envi	ronme	LS ental	ON, Consu	INC Itants	<i>.</i>		-IC Shee	6. A et 2 o	-3 f 3	
																	REV	

Total Depth: 77 ft. Northing: ~ 215,894 Top Elevation: ~ 18 ft. Easting: ~ 1,270,694 Vert. Datum: Station: ~ Horiz. Datum: Offset: ~	<u>0 ft.</u> Dril Dril	ling C I Rig I	lethod: ompan Equipm mment	y: <u>G</u> ent: <u>Cl</u>	ud Rota regory ME 75 1 'HSA to	Rod Diam.: <u>NWJ 2-5/8"</u> Hammer Type: <u>Automatic</u>
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	s e	Symbol	Samples	Ground Water	Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: <u>140 lbs / 30 inches</u> 0 20 40 60
Medium dense, dark gray, interbedded silty, fine SAND and slightly fine sandy to fine sandy SILT, trace of clay; wet; scattered fine organics and pumice grains, trace of shell fragments; (Ha/He) SM/ML. - Silt layers observed at approximately 71 to 71.5 and 75.5 to 76.5 feet. BOTTOM OF BORING COMPLETED 12/4/2010 Note: 1. Contacts above the sampling zone were estimated based on adjacent borings, cuttings and drill action.	70.5 y 77.0				65 70 75 80 85	
⊥ Standard Penetration Test Standard Bent △ △ Bent □ □ Bent	fied and may and selected	nt Grou Pellets evel in N nitions. vary. d lab te	t Well esting.	ter		0 20 40 60
epproximate.					May 20	18 21-1-21441-001 NON & WILSON, INC. al and Environmental Consultants FIG. A-3 Sheet 3 of 3

MASTER_LOG_E 21-21441.GPJ SHAN_WIL.GDT 5/3/18 Log: PVH Rev: PHZ Typ: CLP

REV 3

		Top Elevation: ~ 18 ft. Easting: ~ 1,270,694 ft. Vert. Datum: Station: ~				ethod: ompar Equipm mmen	ıy: 1en	<u> </u>	id Rota egory 1E 75 1 HSA to	-		Hole Diam.: <u>6 in.</u> Rod Diam.: <u>NWJ 2-5/8"</u> Hammer Type: <u>Automatic</u>						
ľ	SOIL D Refer to the report text fr subsurface materials and lines indicated below repr between material types, a	drilling methods. The s	tratification boundaries	Depth, ft.	Symbol	Samples		Ground Water	Depth, ft.	PENE ▲ Han								
ŀ	_ ASPHALT pavement			0.5											-40			00
	Brown, silty, sandy, f moist; (Hf) GM.	ine to coarse GR	AVEL;	2.5														
	See logs of nearby b for soil descriptions a		and S-3	2.5														
									5									
							10/27/2011 i											
							10/2		10				<u> </u>					
									15									::::
									20									
٩													::::					
Typ: CLP									0-									
- 1									25									
Rev: PHZ													:::: ::::					
Log: PVH																		
Log:	CONT	INUED NEXT SHEET								0		20			40			60
5/3/18	* Sample Not Recovere ⊥ Standard Penetration	Test	Piezomet Bentonite	-Cemen	t Grout		lter			0		\$ %	% Fin % Wa		0.075	mm)		00
L.GDT 5			Bentonite	Grout		Ma"												
SHAN WI		NOTES	▼ Ground W	valer Le	vei in V	vell			Joh	n Stanfo	S. Ge ord C Seattle	ente	er Liq	luefa	ctior	n Arr	ay	
21-21441.GPJ SHAN_WIL.GDT 5/3/18	 Refer to KEY for explana Groundwater level, if inc USCS designation is ba The hole location was m 	ation of symbols, codes licated above, is for the sed on visual-manual cl	date specified a assification and	ind may selected	vary. I lab te	-				LOG				-		.3		
LOG_E	approximate.	Casarea nom existing s		SHOUIU		5106160		M	lay 20	18				21	-1-2	2144	1-00)1
MASTER_LOG_E								S Ge		NON &	WIL S	SON al Con	I, IN isultant	C .		IG.		

REV 3

Total Depth: 99.5 ft Top Elevation: ~ 18 ft Vert. Datum:	Easting: <u>~ 1,270,694 f</u>	<u>t.</u> Drill Drill	ing C Rig E	lethod: ompany: Equipmer mments:	<u>Gre</u> nt: <u>CM</u>		ary Hole Diam.: 6 in. Rod Diam.: NWJ 2-5/8" Truck Hammer Type: Automatic 0 4 feet Diam.: Automatic
SOIL DE Refer to the report text fo subsurface materials and d lines indicated below repre	SCRIPTION r a proper understanding of the rilling methods. The stratification sent the approximate boundaries id the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRATION RESISTANCE (blows/fo ▲ Hammer Wt. & Drop: <u>140 lbs / 30 inches</u> 0 20 40
						35	
						40	
						45	
						50	
						55	
						55	
CONT	NUED NEXT SHEET						$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
* Sample Not Recovered ☐ Standard Penetration ⁻	est X Benton	eter Scree ite-Cemen ite Chips/F	t Grou	Sand Filter t			 ◇ % Fines (<0.075mm) ● % Water Content
		ite Grout Water Le	vel in \	Well			U.S. Geological Survey
	NOTES					Joh	n Stanford Center Liquefaction Array Seattle, Washington
 Groundwater level, if indi USCS designation is bas 	INOTES tion of symbols, codes, abbreviation cated above, is for the date specified ed on visual-manual classification ar assured from existing site features and	d and may nd selected	vary. I lab te	esting.			LOG OF BORING P-3
approximate.	asoned norn existing site realures a	ים אוטטוט ו		SIUCI CU	M	ay 20	18 21-1-21441-001
					ŞI	IAN	NON & WILSON, INC. FIG. A-4 al and Environmental Consultants Sheet 2 of 4
					Ge	otechnic	al and Environmental Consultants Sheet 2 of 4

Top Elevation: ~ 18 ft. Easting: ~ 1,270,694 ft. Dr Vert. Datum: Station: ~ Dr		270,694 ft~				Gre nt: CM	Mud Rotary Gregory CME 75 True 9" HSA to 4				Hole Diam.: <u>6 in.</u> Rod Diam.: <u>NWJ 2-5/8</u> Hammer Type: <u>Automatic</u>					-5/8"	
	CRIPTION proper understanding of ing methods. The strating the approximate bou	ification ndaries	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PE	ENE			. & D		140			ows/foo nches
										::			:::		1		
							65			::			::		:		
							60		:::	÷÷		::::	÷ :				
												:::					
							70										
													:::				
													::				
									::::	::			::				
							75		· · · · ·				:: ::		+		
										······································			······································				
							00						::				
							80		:::				:::				
							85		÷ ÷ ÷	<u></u>		÷ ÷ ÷	<u>.</u>		<u> </u>		<u></u>
															-		
													::				
									::::	· · · ·		::::	::				
CONTINU	JED NEXT SHEET							0			20))			40		
* Sample Not Recovered	LEGEND] Piezomete	r Scree	n and	Sand Filte	r					\diamond			S (<0.0			
Standard Penetration Tes					t						•	% V	Vate	er Co	nter	nt	
				Pellets													
	Ţ	Ground W		vel in V	Vell				U.\$	5. G	eolo	ogica	al Si	urvey	/		
							Joh	n Si						efact		Arra	у
	NOTES								S	eatt	le, \	Was	hing	ton			
 Refer to KEY for explanatio Groundwater level, if indicated in the indicated set of the																	
3. USCS designation is based	on visual-manual classi	fication and s	selected	l lab te	-			LC	C	0	FE	301	RIN	IG I	P-3	•	
 The hole location was meas approximate. 	sured from existing site f	eatures and s	should I	be con	sidered			40						0.1			001
							ay 20	18						21-1	1-21	441-	-001
														_		G. A	

Total Depth: 99.5 ft. Top Elevation: ~ 18 ft. Vert. Datum:	Northing: <u>~ 215,910 ft.</u> Easting: <u>~ 1,270,694 ft</u> Station: Offset:	_ Dril _ Dril	ling C I Rig	lethod: compan Equipm	y: _(ent: _(Mud Rota Gregory CME 75 1 9" HSA to	Rod Diam.: <u>NWJ 2-5/8"</u> Fruck Hammer Type: <u>Automatic</u>
SOIL DES Refer to the report text for a subsurface materials and drilli lines indicated below represer between material types, and t	proper understanding of the ng methods. The stratification t the approximate boundaries	Depth, ft.	Symbol	Samples	Ground	Depth, ft.	PENETRATION RESISTANCE (blows/foor ▲ Hammer Wt. & Drop: <u>140 lbs / 30 inches</u> 0 20 40 6
Medium dense, black, s to medium SAND; wet; - Scattered black, sand clayey silt seams and 97.2 feet. - Scattered organic sea feet.	(Ha) SP-SM/SM. ly silt and gray-brown, layers at about 92.7 to	- 92.0				95	
BOTTOM C COMPLETEI Note: 1. Contacts above the s	D 12/20/2010 sampling zone were	- 99.5	<u></u>		<u></u>	100	
estimated based on adj and drill action.	acent borings, cuttings,					105	
						110	
						115	
	LEGEND						0 20 40 6
 ★ Sample Not Recovered ☐ Standard Penetration Tes 	t Bentonit X Bentonit X Bentonit Bentonit	eter Scree e-Cemer e Chips/l e Grout Water Le	nt Grou Pellets	ıt	lter		 ◇ % Fines (<0.075mm) ● % Water Content
	NOTES NOTES n of symbols, codes, abbreviations ed above, is for the date specified	and defi	nitions			Johi	U.S. Geological Survey n Stanford Center Liquefaction Array Seattle, Washington
3. USCS designation is based	on visual-manual classification an ured from existing site features an	d selecte	d lab te	-		May 20	
						Geotechnica	NON & WILSON, INC. al and Environmental Consultants FIG. A-4 Sheet 4 of 4 REV

Total Depth: 145.5 ft. Top Elevation: ~ 18 ft. Vert. Datum:	Northing: ~ 215,939 ft. Easting: ~ 1,270,702 ft. Station: ~ Offset: ~	_ Dril _ Dril	ling C I Rig E	lethod: ompar Equipn mmen	iy: ien	Gre CN		Rod Diam.: <u>NWJ 2-5/8"</u>
SOIL DESCR Refer to the report text for a pro subsurface materials and drilling i lines indicated below represent th between material types, and the	per understanding of the methods. The stratification ne approximate boundaries	Depth, ft.	Symbol	Samples		Ground Water	Depth, ft.	PENETRATION RESISTANCE (blows/foo ▲ Hammer Wt. & Drop: <u>140 lbs / 30 inches</u> 0 20 40 6
ASPHALT Brown, silty, gravelly, fine moist; (Hf) SM.	to medium SAND;	- 0.5						
Easy drilling. See logs of S-3, and P-5 for soil descr feet.		3.5			10/27/2011		5	
							15	
 SAND below about 18.5 action. 	feet, based on drill						20	
							25	
CONTINUED	NEXT SHEET							0 20 40 6
★ Sample Not Recovered Standard Penetration Test	LEGEND Piezome Bentonit Bentonit Elizio Bentonit Elizio Bentonit	e-Cemer e Chips/I	nt Grou		ilter			 ◇ % Fines (<0.075mm) ● % Water Content Plastic Limit
 Standard Penetration Test Refer to KEY for explanation of Groundwater level, if indicated a USCS designation is based on 	▼ Ground ¹ NOTES	Water Le					Joh	U.S. Geological Survey n Stanford Center Liquefaction Array Seattle, Washington
4. The note location was measured	above, is for the date specified visual-manual classification and	and may selecte	' vary. d lab te	esting.			av 20	LOG OF BORING P-4
						<u> </u>	ay 20	18 21-1-21441-001 NON & WILSON, INC. al and Environmental Consultants FIG. A-5 Sheet 1 of 6

Top Elevation: ~ 18 ft. Easting: ~ 1,270 Vert. Datum: Station:	<i>0,702 ft.</i> □ ~ □	Drill Rig E	lethod: ompany: Equipmen mments:	Mud Rot Gregory CME 75 9" HSA	Truck	Hole Diam.: Rod Diam.: Hammer Type	<u>6 in.</u> <u>NWJ 2-5/8"</u> : <u>Automatic</u>
SOIL DESCRIPTION Refer to the report text for a proper understanding of subsurface materials and drilling methods. The stratific lines indicated below represent the approximate bound between material types, and the transition may be grad	ation	Symbol	Samples	Ground Water Depth, ft.	PENETRAT ▲ Hammer		ANCE (blows/foor 40 lbs / 30 inches 40 6
				3: 4(4: 5:			
CONTINUED NEXT SHEET					0	20	40 6
⊥ Standard Penetration Test N ⋈ ⋈ ⋈ ⋈ ⋈ ⋈ ⋈ ⋈ ⋈	Piezometer So Bentonite-Cen Bentonite Chip Bentonite Gro Ground Water	ment Grou ps/Pellets out	t		Plastic L I U.S. Ge	 ◇ % Fines (● % Water (imit	0.075mm) Content Liquid Limit content ey
NOTES 1. Refer to KEY for explanation of symbols, codes, abbre 2. Groundwater level, if indicated above, is for the date s 3. USCS designation is based on visual-manual classific 4. The hole location was measured from existing site fea approximate.	specified and n ation and sele	nay vary. cted lab te	esting.	May 2	Seattl	e, Washington	n
				SHAN Geotechn	INON & WIL	SON, INC. tal Consultants	FIG. A-5 Sheet 2 of 6

	Total Depth: 145.5 ft. Northing: ~ 215,939 ft. Top Elevation: ~ 18 ft. Easting: ~ 1,270,702 ft. Vert. Datum: Station: ~ Horiz. Datum: Offset: ~	_ Drill _ Drill	ling C I Rig E	lethod: ompany: Equipmer mments:	<u> </u>			Hole Diam.: Rod Diam.: Hammer Typ	<u>6 in.</u> <u>NWJ 2-5/8"</u> e: <u>Automatic</u>
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.			ANCE (blows/foot) 40 lbs / 30 inches 40 60
						65 70			
	 Denser at about 74.5 to 78.5 feet, based on drill action. Drilled like interbedded sand and silt below 					75			
VH Rev: PHZ Typ: CLP	about 78.5 feet.					80 85			
Log: PVH	CONTINUED NEXT SHEET								
GDT 5/3/18	★ Sample Not Recovered Standard Penetration Test Standard Penetration Test Determine Determine Determine Determine Determine Determine Determine	e-Cemen e Chips/F	t Grou	Sand Filter t			Plastic Li	20	Content I Liquid Limit
J SHAN_WIL.	▼ Ground V NOTES	Vater Le	vel in \	Well		Joh	n Stanford C	ological Surv enter Liquefa e, Washingto	action Array
MASTER_LOG_E 21-21441.GPJ_SHAN_WIL.GDT 5/3/18	 Refer to KEY for explanation of symbols, codes, abbreviations a Groundwater level, if indicated above, is for the date specified a USCS designation is based on visual-manual classification and The hole location was measured from existing site features and 	and may selected	vary. d lab te	esting.				BORING	
ER LOG	approximate.					ay 20			1-1-21441-001
MASTE					Ge	HANI eotechnic	NON & WILS	SON, INC. al Consultants	FIG. A-5 Sheet 3 of 6

Total Depth: 145.5 f Top Elevation: ~ 18 ft Vert. Datum:	Easting: <u>~ 1,270,702 f</u>	<u>.</u> Drill Drill	ing C Rig E	lethod: ompany: Equipmer	 nt:	ld Rota egory <u>/E 75 1</u>	Fruck	Hole Diam.: Rod Diam.: Hammer Typ	6 in. NWJ 2-5/8" e: Automatic
Refer to the report text fo subsurface materials and d lines indicated below repre	Offset: SCRIPTION r a proper understanding of the rilling methods. The stratification sent the approximate boundaries id the transition may be gradual.	Depth, ft.	Symbol	samples	Ground Water	Depth, ft.			ANCE (blows/fo 40 lbs / 30 inches 40
						95			
						100			
						105			
						110			
						115			
CONTI							0	20	40
* Sample Not Recovered Standard Penetration 1	est Discontinuity Piezona Test Discontinuity Bentoni	eter Scree te-Cement te Chips/P te Grout	t Grout	Sand Filter t	r		Plastic L	 ◇ % Fines (◆ % Water (imit ↓ ● Natural Water (Content
	-	Water Le	vel in V	Well		Joh	n Stanford C	eological Surv enter Liquefa e, Washingto	action Array
 Groundwater level, if indi USCS designation is bas The hole location was me 	NOTES tion of symbols, codes, abbreviations cated above, is for the date specified ed on visual-manual classification an easured from existing site features ar	and may d selected	vary. I lab te	esting.				BORING	
approximate.						lay 20			1-1-21441-001 FIG , A-5
					S Ge		NON & WIL	SON, INC.	FIG. A-5 Sheet 4 of 6

Total Depth: 145.5 ft. Northing: ~ 215,939 ft. Top Elevation: ~ 18 ft. Easting: ~ 1,270,702 ft. Vert. Datum: Station: ~ Horiz. Datum: Offset: ~	<u>t.</u> Drill Drill	ing C Rig I	lethod: company Equipme omments	: <u>Gr</u> ent: <u>CN</u>	ud Rota regory ME 75 1 HSA to	Rod Diam.: NWJ 2-5/8" Truck Hammer Type: Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: <u>140 lbs / 30 inches</u> 0 20 40 60
Medium dense, interbedded black, silty, fine SAND and dark brown-gray, trace to slightly clayey, trace of fine sand to fine sandy SILT; wet; trace of organics and shells, locally trace of fine gravel; (He/Ha) SM/ML. - Approximately 70-degree contact at about 141. - Approximately horizontal contact at 141.5 feet. Very soft to stiff, dark brown-gray, trace to slightly fine sandy, trace to slightly clayey SILT; wet; trace of shells, organic seams, and sand seams; (He/Ha) ML. <u>CONTINUED NEXT SHEET</u> LEGEND * Sample Not Recovered	- 138.0 141.5 145.5 eter Scree te-Cement te Chips/P te Grout	en and t Grou			125 130 135 140 145	0 20 40 60 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
↓ Standard Penetration Test Standard Penetration Test Bentoni ▲ Bentoni ■ Bentoni ▲ Bentoni ■ Test Bentoni ▲ Bentoni ■ Test Bentoni ▲ MOTES Bentoni ■ Test Ground 1. Refer to KEY for explanation of symbols, codes, abbreviations 2. Groundwater level, if indicated above, is for the date specified 3. USCS designation is based on visual-manual classification an 4. The hole location was measured from existing site features ar approximate. Bentoni	d and may nd selected	nitions. vary. I lab te	esting.			U.S. Geological Survey n Stanford Center Liquefaction Array Seattle, Washington
					lay 20 HANN eotechnic	18 21-1-21441-001 NON & WILSON, INC. FIG. A-5 al and Environmental Consultants Sheet 5 of 6

Total Depth: 145.5 ft. Northing: ~ 215,939 ft. Top Elevation: ~ 18 ft. Easting: ~ 1,270,702 ft. Vert. Datum: Station: ~ ~ Horiz. Datum: Offset: ~ ~	Drill Drill	ing C Rig E	ethod: ompany Equipme mments	r: <u>Gr</u> ent: <u>CN</u>	id Rota egory /E 75 1 HSA to	Truc				_ I	Hol Roc Har	d D	ian	n.:	- - - -	6 in. <u>NWJ 2-5/8</u> e: <u>Automatic</u>				
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.					r W					AN 140					
BOTTOM OF BORING COMPLETED 12/15/2010 Note: 1. Contacts above the sampling zone were estimated based on adjacent borings, cuttings,																				
and drill action.					155															
					160															
					165															
					170															
					175															
LEGEND Sample Not Recovered Standard Penetration Test Standard Penetration Tes	-Cement Chips/P Grout	t Grout Pellets	t	er		0	Ρ	las	tic	¢ Elin) % hit	6 ∨ ⊢	Va	ter	<0.0 Co - 1 Cor	nte Liqı	nt uid	Lim	it	60
 Y Ground W <u>NOTES</u> 1. Refer to KEY for explanation of symbols, codes, abbreviations a 					Joh	n S	tar	nfo	rd	Ce	nte	er L	_iq				Arı	ay		
 Groundwater level, if indicated above, is for the date specified a USCS designation is based on visual-manual classification and The hole location was measured from existing site features and approximate. 	nd may selected	vary. I lab te	sting.					G	OF BORING P											
				May 2018 SHANNON & WI Geotechnical and Environm								E1-1-21441-001 FIG. A-5 Sheet 6 of 6								

Total Depth: 156.8 ft. Top Elevation: ~ 18 ft. Vert. Datum:	Northing: ~ 215,949 ft. Easting: ~ 1,270,704 ft. Station: ~ Offset: ~	_ Dri _ Dri	lling C Il Rig I	lethod: compar Equipm ommen	ny: nent:	Gre CM	l Rota gory E 75 T ISA to	F	lole Diam.: Rod Diam.: lammer Type:		6 in. VJ 2-5/8 Itomatic	
SOIL DESC Refer to the report text for a p subsurface materials and drilling lines indicated below represent between material types, and the	roper understanding of the methods. The stratification the approximate boundaries	Depth, ft.	Symbol	Samples	Ground	Water	Depth, ft.	PENETRATIC ▲ Hammer Wi	t. & Drop: <u>14</u>		•	
ASPHALT		0.5										
Brown, silty, gravelly, fine moist; (Hf) SM.	e to medium SAND;			•								
Very loose to loose, dark sandy SILT; wet; (Hf) ML		3.0										
							5		•		\rightarrow	
				.T								
					⊻₿						::::	
					0/27/2011							
					10/27		10		· · · · · · · · · · · · · · · · · · ·		::::	:::
Very soft, black and dark	grav. silty CLAY: wet:	10.4		2	10/		10	1/04"	:::: 	: : :		<u>.</u>
locally trace of fine to me	dium sand (10.4 to 11							1724		: : :	::::	:::
feet), locally trace of shel											::::	
shells at 11 feet; (Hf/He)	CH.									::::		::::
							15					::::
				3			13	0/22" (WOH)				
												::::
				_			20					<u> </u>
\- With organic seam at b	/	20.3		. 4								
Loose to medium dense,] —								
slightly gravelly SAND; w organics, cinders, coal, a		23.0										
21 feet; (Hf/Ha) SP-SM.												
Medium dense to dense,	dark brown-gray to			·			25	$\xrightarrow{\cdot}$	•	<u>: : :</u>	<u></u>	<u> </u>
black, slightly silty, fine to				5								
SAND; wet; trace of orga fragments; (Ha) SP-SM.	nics and shell											
- Possible pumice at 25	to 25.5 feet and											
woody seams at 25.5 to				•								
CONTINUE	NEXT SHEET			1		Ø		0 ↔ ● ₂	<u> </u>	40		60
t Comple Net Desevered	LEGEND Piezomet	or Core		Cond C	Hor				% Fines (<0		n)	00
 ★ Sample Not Recovered ⊥ Standard Penetration Test 	Bentonite				ilei			•	% Water C	onten	t	
	Bentonite		Pellets					Plastic Lim Nat	it	Liqui	d Limit	
	E Bentonite Ground V		ovol in l	M/all	Г							
		FUICI L					Joh	U.S. Geol n Stanford Cer	ogical Surve	-	Irray	
	NOTES						0011		Washington		aray	
1. Refer to KEY for explanation of		and def	initions		┢							
2. Groundwater level, if indicated				ati								
 USCS designation is based or The hole location was measur 				-				LOG OF I	SURING	г -Э		
approximate.	0					Ma	ay 20 ⁻	18	21-	-1-214	441-00	1
					┝		-					
						St Geo	1ANN technica	INN & WILSO	DN, INC.	FIC	9. A-6	

	Total Depth: 156.8 ft. Northing: ~ 215,949 ft. Top Elevation: ~ 18 ft. Easting: ~ 1,270,704 ft. Vert. Datum: Station: ~ Horiz. Datum: Offset: ~	_ Dril _ Dril	ling C I Rig I	lethod: company Equipme omments	: <u> </u>	lud Rotai regory ME 75 T " HSA to	Rod Diam.: Fruck Hammer Type	<u>6 in.</u> <u>NWJ 2-5/8"</u> e: <u>Automatic</u>
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRATION RESIST. ▲ Hammer Wt. & Drop: <u>1</u>	
	 Scattered silty organic seams below 35.5 feet. Sand is more fine-grained below 38 feet. Layer of wood fragments and twigs at 40.0 to 40.3 feet. 					35 - 40 -		
	- Scattered silt seams below 50 feet.			9		45 50		
Log: PVH Rev: PHZ Typ: CLP	Medium dense to dense, black, slightly silty, fine to medium SAND; wet; 1/2-inch organic layer at 55.1 feet; (Ha) SP-SM.	53.0		11		55		
/IL.GDT 5/3/18	* Sample Not Recovered Standard Penetration Test Standard Penetration Test Dentemperature Dentemperature	e-Cemer e Chips/l e Grout	nt Grou Pellets		er		0 × 20 [™] ♦ % Fines (● % Water (Plastic Limit ● Natural Water (Content Liquid Limit Content
MASTER_LOG_E 21-21441.GPJ SHAN_WIL.GDT 5/3/18	<u>NOTES</u> 1. Refer to KEY for explanation of symbols, codes, abbreviations a 2. Groundwater level, if indicated above, is for the date specified a	and defi	nitions			Johr	U.S. Geological Surv n Stanford Center Liquefa Seattle, Washingto	action Array
JG_E 21-214	 USCS designation is based on visual-manual classification and The hole location was measured from existing site features and approximate. 	selecte	d lab te	-		May 20 <i>°</i>	LOG OF BORING	6 P-5 1-1-21441-001
MASTER_L(-	ION & WILSON, INC. al and Environmental Consultants	FIG. A-6 Sheet 2 of 6

Total Depth: 156.8 ft. Northing: ~ 215,949 ft. Top Elevation: ~ 18 ft. Easting: ~ 1,270,704 ft. Vert. Datum: Station: ~ Horiz. Datum: Offset: ~	_ Dril _ Dril	ling C I Rig I	lethod: company Equipme omments	: <u>Gr</u> nt: <u>C</u> M	ud Rota egory //E 75 1 HSA to	Rod Diam.: <u>NWJ 2-5/8"</u> Truck Hammer Type: <u>Automatic</u>
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: <u>140 lbs / 30 inches</u> 0 20 40 60
Medium dense, dark brown-gray, silty, fine SAND to fine sandy SILT; wet; scattered organics; (Ha/He) SM/ML.	60.8		12			
Medium dense, black and dark brown-gray, slightly silty to silty, fine SAND; wet; trace to scattered organics; (Ha) SP-SM/SM.	65.3		13		65	
 Interbedded with layers of silt below 70 feet. 					70	
			15		75	•
Interbedded dark gray-brown, very loose to loose, slightly fine sandy to fine sandy SILT, trace of clay, and loose to medium dense, dark brown-gray to black, slightly silty to silty, fine SAND; wet; scattered organic seams, scattered pumice, locally trace of clay, approximately 10-degree bedding; (He/Ha)	- 78.0		16		80	e e
ML/SM/SP-SM.			17		85	•H
CONTINUED NEXT SHEET						
* Sample Not Recovered Standard Penetration Test Standard Penetration Test Standard Penetration Test Bentonite Bentonite Ground N Ground N	e-Cemer e Chips/F e Grout	it Grou Pellets		er		0 20 40 60
<u>NOTES</u>					Joh	n Stanford Center Liquefaction Array Seattle, Washington
 Refer to KEY for explanation of symbols, codes, abbreviations Groundwater level, if indicated above, is for the date specified a USCS designation is based on visual-manual classification and The hole location was measured from existing site features and approximate. 	and may selected	vary. d lab te	esting.	N	lay 20	LOG OF BORING P-5
					-	NON & WILSON, INC. al and Environmental Consultants FIG. A-6 Sheet 3 of 6

Total Depth: Top Elevation: Vert. Datum: Horiz. Datum:	156.8 ft. ~ 18 ft.	_ Northing: _ _ Easting: _ _ Station: _ Offset:	~ 215,949 ft. ~ 1,270,704 ft. ~	_ Dril _ Dril	ling C I Rig	/lethod: Company Equipm	ent:	Mud Rota Gregory CME 75 T 9" HSA to	Rod Diam.: <u>NWJ 2-5/8"</u> Truck Hammer Type: <u>Automatic</u>
Refer to the rep subsurface mater lines indicated be between materia	ials and drillin low represent	proper understar g methods. The the approximat	e stratification e boundaries	Depth, ft.	Symbol	Samples	Ground	Water Depth, ft.	PENETRATION RESISTANCE (blows/foo ▲ Hammer Wt. & Drop: <u>140 lbs / 30 inches</u> 0 20 40 6
Loose to med brown-gray, si SAND; wet; tr approximately SM/SP-SM.	Ity, and bla ace to scat	ack, slightly tered organi	silty, fine ics,	90.6		18		95	
Loose, dark b fine sandy SIL to silty, fine S/ fragments; (H	T, trace of AND; wet; t e/Ha) ML/S	clay, and sl trace of she M/SP-SM.	ightly silty	98.0 101.0		20		100	
Medium dense interbedded tr wet; trace to s - With scatter sandy, claye (10-degree	ace of silt f cattered or ed 1-inch I ey SILT at	to silty, fine ganics; (Ha ayers of slig	SAND;) SM/SP. htly			21		105	
						22		110	
						23		115	
	CONTINUE	D NEXT SHEET				•			0 20 40 6
* Sample Not ⊥ Standard Pe	Recovered netration Test	LEGEND	Piezomet Piezomet Piezomet Bentonite Bentonite Bentonite GUB Bentonite GGound V	-Cemer Chips/F Grout	it Grou Pellets	ıt	ter		 ◇ % Fines (<0.075mm) ◆ % Water Content Plastic Limit → ↓ Liquid Limit Natural Water Content U.S. Geological Survey
 Refer to KEY for Groundwater let USCS designation The hole location 	vel, if indicate	d above, is for th n visual-manual	es, abbreviations a ne date specified a classification and	and defin and may selected	nitions vary. d lab te	s. esting.		Joh	D.S. Geological Survey n Stanford Center Liquefaction Array Seattle, Washington
approximate.								May 20 SHANI Geotechnic	18 21-1-21441-001 NON & WILSON, INC. al and Environmental Consultants FIG. A-6 Sheet 4 of 6

Total Depth: 156.8 ft. Northing: ~ 215,949 ft. Top Elevation: ~ 18 ft. Easting: ~ 1,270,704 ft. Vert. Datum: Station: ~ Horiz. Datum: Offset: ~	_ Dril _ Dril	ling C I Rig	/lethod: Company: Equipme comments:	 nt:		Rod Diam.: <u>NWJ 2-5/8"</u>
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: <u>140 lbs / 30 inches</u> 0 ∧ 20 40 60
Loose, black to dark brown-gray, silty, fine SAND; wet; scattered organics; (Ha) SM.	- 123.0		24		125	
Loose to medium dense, dark brown-gray, interbedded fine sandy SILT, trace of clay, and silty, fine SAND; wet; scattered organics, scattered pumice within scattered 1/2-inch black sand layers; (He/Ha) ML.	- 130.5		26		135	
Soft, dark brown-gray, clayey SILT; wet; scattered sand layers; (He) ML.	- 138.0		28		140	•
Very loose, dark brown-gray, interbedded sightly fine sandy SILT, trace of clay, and silty, fine SAND; wet; scattered organics and shell fragments; (He/Ha) ML/SM. Very soft, dark brown-gray and black, clayey SILT, trace of fine sand; wet; trace of shell fragments and organics; (He) ML.	- 143.0 - 147.0		29		145	
CONTINUED NEXT SHEET LEGEND * Sample Not Recovered ⊡⊡ Piezome ↓ Standard Penetration Test NN Bentonit ◎ □ Bentonit ↓ Ground N	e-Cemer e Chips/ł e Grout	nt Grou Pellets	ut ;			/::::::::::::::::::::::::::::::::::::
NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviations 2. Groundwater level, if indicated above, is for the date specified 3. USCS designation is based on visual-manual classification and 4. The hole location was measured from existing site features and approximate.	n of symbols, codes, abbreviations and definitio ed above, is for the date specified and may var on visual-manual classification and selected lat				Johi	n Stanford Center Liquefaction Array Seattle, Washington LOG OF BORING P-5 18 21-1-21441-001
				S Ge		NON & WILSON, INC. FIG. A-6 al and Environmental Consultants Sheet 5 of 6

	Top Elevation: ~ 18 ft. Easting: ~ 1,270,70 Vert. Datum: Station: Horiz. Datum: Offset: ~					/: <u> </u>	lud Rotai Gregory ME 75 T " HSA to	Rod r <u>uck</u> Ham	e Diam.: Diam.: imer Type:	NWJ	in. 2-5/8" omatic
	sent the approximate boun	f the fication daries adual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRATION ▲ Hammer Wt. & 0 20			
					30			0/18" (WOR)			•••••
					31		155	0/22" (WOR)	•	<u> </u>	
COMPLET	OF BORING ED 12/16/2010	1	56.8-								
Note: 1. Topped off grout s	eal on 12/17/2010.						160 -				
							100				
							165 -				
							170			<u> </u>	
CLP											
Typ:							175			<u> </u>	
Rev: PHZ											
Log: PVH Rei											
	LEGEND							0 20		40	<u> </u>
* Sample Not Recovered Standard Penetration T	t IIII		ement (nips/Pe	Grou		er		● % Plastic Limit	Fines (<0 Water C	ontent Liquid	Limit
Standard Penetration T Standard Penetration T 1. Refer to KEY for explana 2. Groundwater level, if indi 3. USCS designation is bas 4. The hole location was me approximate.	▼ <u>NOTES</u>	Ground Wat					Johr	U.S. Geologi Stanford Center Seattle, Wa	r Liquefac	tion Ar	ray
 Refer to KEY for explana Groundwater level, if indi USCS designation is bas The hole location was me 	 Refer to KEY for explanation of symbols, codes, abbreviations Groundwater level, if indicated above, is for the date specified USCS designation is based on visual-manual classification an The hole location was measured from existing site features an approximate. 							LOG OF BC	ORING	P-5	
approximate.						ľ	May 20 ⁻	8	21-	-1-2144	1-001
MASTEF							SHANN Geotechnica	ION & WILSON I and Environmental Cons	, INC. ultants	FIG. Sheet	

	Total Depth: 180.5 ft. Northing: ~ 215,960 ft Top Elevation: ~ 18 ft. Easting: ~ 1,270,708 Vert. Datum: Station: ~ Horiz. Datum: Offset: ~	<u>ft.</u> Dri Dri	lling M lling C Il Rig E ner Co	ompar Equipn	iy: ient	<u> </u>	d Rota egory 1E 75 1 HSA to		Hole Diam.: Rod Diam.: Hammer Typ	6 in. <u>NWJ 2-5/8"</u> e: <u>Automatic</u>
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples		Water	Depth, ft.			ANCE (blows/foot) 40 lbs / 30 inches 40 60
	ASPHALT Brown, silty, sandy GRAVEL; moist; railroad ballast; (Hf) GM. See logs of nearby borings P-4, P-5, S-2, and S-3 for soil descriptions above 169.5 feet.	~ 0.2 ~ 2.0			1 1		5			
					10/27/2011		10			
	- Top of sand at approximately 17 feet, based						15			
	on drill action.						20			
VH Rev: PHZ Typ: CLP							25			
Log: PVH	CONTINUED NEXT SHEET							0	20	40 60
GDT 5/3/18	⊥ Standard Penetration Test Standard Benton Standard Penetration Test Standard Benton Standard Penetration Test Benton Standard Penetration Test Benton Standard Penetration Test Benton Standard Penetration Test Benton	neter Scre ite-Ceme ite Chips/ ite Grout	nt Grou Pellets	t	lter			Plastic L	Natural Water (Content Liquid Limit Content
N SHAN W	<u>NOTES</u>	d Water L					Joh	n Stanford C	eological Surv center Liquefa e, Washingto	action Array
E 21-21441.GPJ SHAN WIL.GDT 5/3/18	 Refer to KEY for explanation of symbols, codes, abbreviation Groundwater level, if indicated above, is for the date specifie USCS designation is based on visual-manual classification a The hole location was measured from existing site features a approximate. 	d and ma nd selecte	y vary. ed lab te	esting.				LOG OF	BORING	9 P-6
MASTER_LOG						<u> </u>	ay 20	18 NON & WIL		1-1-21441-001 FIG. A-7 Sheet 1 of 7

Total Depth: 180.5 ft. Top Elevation: ~ 18 ft. Vert. Datum:	Northing: ~ 215,960 ft Easting: _ 1,270,708 ft Station: _ ~ Offset: _ ~	<u>t.</u> Drilling Drill Ri	y Method: y Company: g Equipmer Comments:	Gree nt: <u>CME</u>	E 75 1	ry Hole Diam. Rod Diam.: <u>ruck</u> Hammer Ty 4 feet	NWJ 2-5/8"
Refer to the report text for a subsurface materials and dril. lines indicated below represe	SCRIPTION a proper understanding of the ing methods. The stratification nt the approximate boundaries the transition may be gradual.	Depth, ft.	Samples	Ground Water	Depth, ft.	PENETRATION RESIS ▲ Hammer Wt. & Drop: 0 20	
					35 40 45 50 55		
 * Sample Not Recovered T Standard Penetration Te 1. Refer to KEY for explanation 2. Groundwater level, if indication 3. USCS designation is based 	st Senton	te-Cement G te Chips/Pelle te Grout Water Level s and definition d and may van dd selected la	ets in Well ons. y. o testing.	Ma	iy 20	Plastic Limit Honor Natural Wate U.S. Geological Su n Stanford Center Lique Seattle, Washing	Content Liquid Limit Content rvey faction Array on

Total Depth: 180.5 ft. Top Elevation: ~ 18 ft. Vert. Datum:	Northing: ~ 215,960 ft. Easting: ~ 1,270,708 ft. Station: ~ Offset: ~	_ Drilli _ Drill	ing C Rig E	ethod: ompany: Equipme mments:	<u> </u>	id Rota egory //E 75 1 HSA to	Rod Diam.: NWJ 2-5/8"
SOIL DES Refer to the report text for a subsurface materials and drillin lines indicated below represen between material types, and t	proper understanding of the ng methods. The stratification t the approximate boundaries	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRATION RESISTANCE (blows/foo ▲ Hammer Wt. & Drop: <u>140 lbs / 30 inches</u> 0 20 40 66
						65 70 75 80 85	
CONTINU	ED NEXT SHEET						0 20 40 6
		e-Cement e Chips/P e Grout	Grou ellets		r	Joh	V V
 2. Groundwater level, if indicate 3. USCS designation is based 4. The hole location was measured 	NOTES of symbols, codes, abbreviations ad above, is for the date specified a on visual-manual classification and ured from existing site features and	and may selected	vary. Iab te	sting.		1ay 20	Seattle, Washington
approximate.						-	NON & WILSON, INC. al and Environmental Consultants FIG. A-7 Sheet 3 of 7

Total Depth: 180.5 ft. Top Elevation: ~ 18 ft. Vert. Datum:	Northing: ~ 215,960 ft. Easting: ~ 1,270,708 ft. Station: ~ Offset: ~	<u>t.</u> Drilli Drill	ng Co Rig E	ethod: ompany Equipme mments	: <u>Gr</u> nt: <u>CN</u>	id Rota egory <u>1E 75 1</u> HSA to		Rod	e Diam.: I Diam.: nmer Type		6 in. NJ 2-5/8 utomatio	
SOIL DES Refer to the report text for subsurface materials and dril lines indicated below represe	SCRIPTION a proper understanding of the ling methods. The stratification int the approximate boundaries the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRA ▲ Hammer					
									· · · · · · · ·			
						95						
						100						
						105			<u></u>		· · · · · ·	
						110			· · · · · · · ·			: :
						115						::
									· · · · · · · ·			:::
CONTIN	UED NEXT SHEET						0	20		40		(
* Sample Not Recovered	LEGEND	eter Screer	n and	Sand Filte	er				Fines (<			
Standard Penetration Te	Series Series	te-Cement		t			Plastic		5 Water (t
		te Chips/Po te Grout	ellets						al Water C			
	⊈ Ground	Water Lev	el in V	Vell				-	ical Surv	-		
						Joh	n Stanford		-		Array	
1. Refer to KEY for explanation	NOTES on of symbols, codes, abbreviations	and defini	itions.		-		Seat	ie, wa	ashingto	1		
2. Groundwater level, if indica	ated above, is for the date specified	l and may	/ary.									
-	d on visual-manual classification an sured from existing site features ar			-			LOG O	- B(JRING	i P-6)	
approximate.					м	lay 20	18		21	-1-21	441-00)1
						-		SUN				
					3 Ge	eotechnic	NON & WIL al and Environme	ntal Cons	sultants		G. A-7	

Top Elevation: <u>~ 18 ft.</u> Vert. Datum: Horiz. Datum:	Easting: _~	~ 215,960 ft. ~ 1,270,708 ft. ~ ~	Drill Drill	ing Co Rig E	ethod: ompany: Equipmer mments:	Gre nt: <u>CM</u>	id Rota egory <u>IE 75 1</u> HSA to	Truck			R	od D	Diam. iam.: ner Ty			6 in VJ 2- utom	-5/8	
	SCRIPTION a proper understand ling methods. The s ent the approximate	ding of the stratification boundaries	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PE	NE			& C		TAN 140				
							125		<u> </u>			÷ ÷ ;		<u></u>	<u> </u>			
															-			
													::::	::::				:
										· · · · · · · · · · · · · · · · · · ·		: : :	:::	:::: ::::			:::	
							130						· · · ·	· · · ·	+			
																	:::	:
														:::				
							135	÷÷		:::		:::	:::	• • •			: : :	
							135						::::					
																	: : :	
							140		<u>; ; ;</u>	÷ ÷ ÷		<u>;;;</u> ;	÷÷;	<u>;;;</u>				
												: : :	: : :					
							145											
										:::								
												:::	:::	:::			:::	
														<u>.</u>				
CONTINU	JED NEXT SHEET																	
	LEGEND		-					0			20 ⇔		ines	، 0.0>) ا	40 175mr	m)		
 * Sample Not Recovered Standard Penetration Text 		Piezomete									\bullet	% V	Vate	r Co	nten	nt		
		Bentonite		Pellets					Pla					- r Cor			mit	
	Ĺ	✓ Bentonite✓ Ground W		vel in V	Vell				110					irvey				
		-					Joh	n St				-		efacti		Arra	v	
	NOTES												hing					
 Refer to KEY for explanation Groundwater level, if indication 	-																	_
 Groundwater level, if Indica USCS designation is based 		-	-	-	sting.			LC)G	OF	FE	30	RIN	IG F	> _6	;		
	sured from existing	site features and	should	be con	sidered			-										
 The hole location was meas approximate. 	Ŭ																	
4. The hole location was meas approximate.	Ū					M	ay 20	18						21-1	-214	441	-00	1

Total Depth: 180.5 ft. Top Elevation: ~ 18 ft. Vert. Datum:	_ Easting: <u>~ 1,270,708 ft.</u> Station: <u>~</u>	_ Drilling _ Drill Ri	y Method: y Company: g Equipmer Comments:	Gre t: CN			Hole Diam.: Rod Diam.: Hammer Type:	6 in. NWJ 2-5/8" Automatic
SOIL DESC Refer to the report text for a p subsurface materials and drillin lines indicated below represen between material types, and th	proper understanding of the g methods. The stratification t the approximate boundaries	Depth, ft. Sumbol	Samples	Ground Water	Depth, ft.			NCE (blows/foot) 0 lbs / 30 inches 40 60
- Drill action very soft be	elow about 156 feet.				155			
 Stiffer drill action starti and 168 feet, with clay end of 169.5-foot run. 	-				165			
Medium dense(?), black feet) to slightly silty (170 medium SAND; wet; inte with dark brown-gray, sa organic seams and shell SM/SP-SM. - Sampler collected at 1 and bulging; blow cour representative. Very loose, black SILT, t clay; wet; trace of shell f ML.	to 171 feet), fine to erbedded at 171 feet indy silt, trace of fragments; (He/Ha) 69.5 feet was overfull nt may not be trace of fine sand and	169.5 171.5 173.0			170	0/24" (WOR) 0/24" (WOR)		
	Image: Sector Secto	-Cement G Chips/Pelle Grout /ater Level	ets in Well		Joh	Plastic Lin N U.S. Ge n Stanford Co	20 ⇒ % Fines (<0 ● % Water Comit Inter Comit atural Water Comit ological Surve enter Liquefac e, Washington	ontent Liquid Limit ontent y
 Groundwater level, if indicate USCS designation is based of 	er dynasis, edge, absorbiation of ed above, is for the date specified a on visual-manual classification and red from existing site features and	ind may var selected lat	ry. b testing.	м	ay 20		BORING	P-6 1-21441-001

	Total Depth: Top Elevation: Vert. Datum: Horiz. Datum:	~ 18 ft.		~ 215,960 ft. ~ 1,270,708 ft. ~ ~	_ Drill _ Drill	ing C Rig I	lethod: company Equipme omments	/: <u> </u>	Mud Rota Gregory CME 75 T " HSA to	Truck	Hole Diam.: Rod Diam.: Hammer Typ	6 in. <u>NWJ 2-5/8"</u> e: <u>Automatic</u>
	Refer to the repo subsurface materia lines indicated belo between material t	als and drilling ow represent t	oper understan methods. The he approximate	stratification boundaries	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.			ANCE (blows/foot) 140 lbs / 30 inches 40 60
	Very soft, dark of fine sand; we ML. Very dense, gre of silt; wet; (Qp BO	gray, sligh et; trace of een-gray, g go) SP. TTOM OF IPLETED ovve the sa	tly clayey S shell fragm gravelly SAI BORING 12/20/2010 mpling zon	e were	180.5		4	- Kasa	185 190 195			
Log: PVH Rev: PHZ Typ: CLP									200			
	 * Sample Not R ⊥ Standard Pene 			Piezomet Bentonite Bentonite Bentonite Bentonite Ground V	-Cemen Chips/F Grout	t Grou Pellets	t	er			20 ♦ % Fines (● % Water (imit ↓ ● Natural Water (Content I Liquid Limit Content
MASTER_LOG_E_21-21441.GPJ_SHAN_WIL.GDT 5/3/18	 Refer to KEY for Groundwater lev USCS designation The hole location 	el, if indicated	above, is for th visual-manual	- es, abbreviations a le date specified a classification and	and defir and may selected	nitions. vary. I lab te	esting.		Johi	n Stanford C Seattl	eological Surv Center Liquefa e, Washingto F BORING	action Array n
MASTER_LOG	approximate.								May 20 SHANN Geotechnica	18 NON & WIL al and Environmen		1-1-21441-001 FIG. A-7 Sheet 7 of 7

Refer to the report ext or a group understandard build with a magnetic the approximate foundaries Image: Status of the sequence of the approximate foundaries ASPHALT See logs of nearby borings P-1 and S-3 for soil 1.2 See logs of nearby borings P-1 and S-3 for soil 1.2 Medium dense, black, slightly slity, fine to medium sAND, wet; (Hf/He) CL/CH. 19.0 Medium dense, black, slightly slity, fine to medium sature of the sampling zone were estimated based on adjacent borings, cuttings, and drill action. 19.0 * Sample Not Recovered Fecometer Soreen and Sand Filter * Sample Not Recovered Fecometer Soreen and Sand Filter * Sample Not Recovered Fecometer Soreen and Sand Filter * Sample Not Recovered Fecometer Soreen and Sand Filter * Sample Not Recovered Fecometer Soreen and Sand Filter * Sample Not Recovered Fecometer Soreen and Sand Filter * Sample Not Recovered Fecometer Soreen and Sand Filter * Contacts above the sampling zone were estimated based on adjacent borings, cuttings, and drill action. ISCES 1. Rofer to KEY for opdination of symbos, codes, abbreviations and definitions. Contacts above the sampling zone were estimated based on adjacent borings, cuttings. 1. Rofer to KEY for opdination of symbos, codes, abbreviations and definitions. Contacts above the sampling zone were estim	Total Depth: 20.5 ft. Northing: ~ 215,886 ft Top Elevation: ~ 18 ft. Easting: ~ 1,270,688 Vert. Datum: Station: ~ Horiz. Datum: Offset: ~	<u>ft.</u> Dri Dri	lling C Il Rig I	lethod: company Equipme omments	r: <u>Gr</u> ent: <u>Cl</u>	ud Rota regory ME 75 1 HSA to	Rod Diam.: <u>NWJ 2-5/8"</u> Truck Hammer Type: <u>Automatic</u>
See logs of nearby borings P-1 and S-3 for soil 1.2 descriptions above 19 feet. 1.2 Dark gray, silty CLAY, wet, (HifHe) CL/CH. 18.0 Medium dense, black, slightly silty, fine to medium SAND; wet, (Ha/H) SP-SM. 19.4 BOTTOM OF BORING COMPLETED 12/4/2010 Note: 10.4 1. Contacts above the sampling zone were estimated based on adjacent borings, cuttings, and drill action. 11.2 * Sample Not Recovered Standard Penetration Test Prozenetor Screen and Sand Filer Standard Penetration Test EGEND Standard Penetration Test Prozenetor Screen and Sand Filer Standard Penetration Test MOTES 1. Refer to KEY for explanation of symbols, codes, abbreviations and definitions. Corondwate level, if indicated back, is for the date specified and my vary. 1. Refer to KEY for explanation of symbols, codes, abbreviations and definitions. Corondwate level, if indicated back, if in during during screen and sand Filer Standard Penetration Test MOTES 1. Refer to KEY for explanation of symbols, codes, abbreviations and definitions. Corondwate level, if indicated back, is for the date pacified and my vary. 3. USCS designation is based on vasul-manual destification and selected ab backing MOTES 1. Refer to KEY for explanation of symbols, codes, abbreviations and definitions. Corondwate level, if indicated back, is for the date pacified and my vary. 3. USCS designation is based on vasul-manual destification on adetatys aff back back coronds ward manual destination on d	Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	
See logs of nearby borings P-1 and S-3 for soil descriptions above 19 feet. Dark gray, silty CLAY; wet; (Hf/He) CL/CH. Medium dense, black, slightly silty, fine to Medium dense, black, slightly silty, fine to Medium SAND; wet; (Har/H) SP-SM. BOTTOM OF BORING COMPLETED 12/4/2010 Note: 1. Contacts above the sampling zone were estimated based on adjacent borings, cuttings, and drill action. EEGEND Second S	ASPHALT						
Lark gray, silly CLAY; wet; (Hi/He) CL/CH. Medium dense, black, slightly silly, fine to medium SAND; wet; (Ha/Hf) SP-SM. 19.4 1 20 <td></td> <td>- 1.2</td> <td></td> <td></td> <td></td> <td>10</td> <td></td>		- 1.2				10	
Note: 1. Contacts above the sampling zone were estimated based on adjacent borings, cuttings, and drill action. 25 25 * Sample Not Recovered Image: Piezometer Screen and Sand Filter 0 20 40 6 * Sample Not Recovered Image: Piezometer Screen and Sand Filter 0 20 40 6 * Sample Not Recovered Image: Piezometer Screen and Sand Filter 0 20 40 6 * Sample Not Recovered Image: Piezometer Screen and Sand Filter 0 20 40 6 * Standard Penetration Test Image: Piezometer Screen and Sand Filter 0 0 20 40 6 Image: Piezometer Screen and Sand Filter Image: Piezometer Screen and Sand Filter 0 </td <td>Medium dense, black, slightly silty, fine to medium SAND; wet; (Ha/Hf) SP-SM. BOTTOM OF BORING</td> <td>19.4</td> <td></td> <td>1</td> <td></td> <td>20</td> <td></td>	Medium dense, black, slightly silty, fine to medium SAND; wet; (Ha/Hf) SP-SM. BOTTOM OF BORING	19.4		1		20	
 ▲ Sample Not Recovered ▲ Standard Penetration Test ▲ Standard Penetration Test ▲ Bentonite-Cement Grout ▲ Bentonite Chips/Pellets ▲ Bentonite Grout ▲ Ground Water Level in Well U.S. Geological Survey John Stanford Center Liquefaction Array Seattle, Washington NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviations and definitions. 2. Groundwater level, if indicated above, is for the date specified and may vary. 3. USCS designation is based on visual-manual classification and selected lab testing. 4. The hole location was measured from existing site features and should be considered approximation LOG OF BORING S-1 	1. Contacts above the sampling zone were estimated based on adjacent borings, cuttings,					25	
 LEGEND Sample Not Recovered Standard Penetration Test Standard Penetration Test Bentonite-Cement Grout Bentonite Chips/Pellets Bentonite Grout Ground Water Level in Well U.S. Geological Survey John Stanford Center Liquefaction Array Seattle, Washington NOTES Refer to KEY for explanation of symbols, codes, abbreviations and definitions. Groundwater level, if indicated above, is for the date specified and may vary. USCS designation is based on visual-manual classification and selected lab testing. The hole location was measured from existing site features and should be considered approximation 							$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	* Sample Not Recovered Piezon	nite-Cemer nite Chips/ nite Grout	nt Grou Pellets	ıt	er		 ◇ % Fines (<0.075mm) ● % Water Content
	NOTES	as and defi	nitions			Joh	
SHANNON & WILSON, INC. FIG. A-8		ed and may	/ vary. d lab te	esting.		/av 20	
						-	

Febre to the report let for a proper understanding of the substrates and milling methods. The statilication inters indicated below represent the approximate boundaries indicated below represented by the indicated below represented	Method: Mud Rotary Hole Diam.: 8 in. Company: Gregory Rod Diam.: NWJ 2-5 g Equipment: CME 75 Truck Hammer Type: Automat Comments: 9" HSA to 4 feet Hammer Type: Automat	<u> </u>	ompany: Equipmen	Drilling C Drill Rig E		Northing: Easting: Station: Offset:		Total Depth: _ Top Elevation: _ Vert. Datum: _ Horiz. Datum: _
Brown, silty, gravelly SAND; moist; (Hf) SM. See logs of nearby borings P-4, P-5, and S-3 for soll descriptions above 140 feet. - SAND below approximately 18 feet, based on drill action. - SAND below approximately 18 feet, based on drill action. - Sample Not Recovered - Sample Not Recove	Set PENETRATION RESISTANCE (blow D ± <th>Ground Water</th> <th>Samples</th> <th>Symbol</th> <th>fication Indaries</th> <th>per understanding methods. The stra e approximate bo</th> <th>port text for a pro rials and drilling elow represent th</th> <th>Refer to the rep subsurface mate lines indicated be</th>	Ground Water	Samples	Symbol	fication Indaries	per understanding methods. The stra e approximate bo	port text for a pro rials and drilling elow represent th	Refer to the rep subsurface mate lines indicated be
See logs of nearby borings P-4, P-5, and S-3 for soil descriptions above 140 feet.						D; moist; (Hf)	gravelly SAN	<u></u>
- SAND below approximately 18 feet, based on drill action. - CONTINUED NEXT SHEET CONTINUED NEXT SHEET LEGEND * Sample Not Recovered Plezometer Screen and Sand Filter O _ Shear Wave Velocity (feet per center screen and Sand Filter O _ Shear Wave Velocity (feet per center screen and Sand Filter O _ Shear Wave Velocity (feet per center screen and Sand Filter O _ Shear Wave Velocity (feet per center screen and Sand Filter O _ Shear Wave Velocity (feet per center screen and Sand Filter O _ Shear Wave Velocity (feet per center screen and Sand Filter			¥		S-3			
- SAND below approximately 18 feet, based on drill action. 20 20 20 20 20 20 20 20 1 20 1 20 20 20 20 20 20 20 20 20 20			During Drilling					
AD OC AT A A A A A A A A A A A A A A A A A A								
CONTINUED NEXT SHEET 0 500 100 LEGEND 0 500 100 * Sample Not Recovered Piezometer Screen and Sand Filter 0 % Eines (<0.075mm)					sed	tely 18 feet, b		
CONTINUED NEXT SHEET CONTINUED NEXT SHEET LEGEND * Sample Not Recovered * Sample Not Rec								
LEGEND D Sample Not Recovered D Piezometer Screen and Sand Filter O So Constant of the second s								
* Sample Not Recovered Piezometer Screen and Sand Filter	000 1000						CONTINUED	
John Stanford Center Liquefaction	out ◇ % Fines (<0.075mm) →	r	t D	nent Grout ps/Pellets ut Level ATI	Bentonite Bentonite Bentonite Ground W			
1. Refer to KEY for explanation of symbols, codes, abbreviations and definitions. 2. Groundwater level, if indicated above, is for the date specified and may vary. 3. USCS designation is based on visual-manual classification and selected lab testing. 4. The hole location was measured from existing site features and should be considered	Itesting.		sting.	lefinitions. nay vary. cted lab te	previations and specified ar	<u>NOTES</u> symbols, codes, a above, is for the da visual-manual clas	evel, if indicated ation is based on	 Groundwater le USCS designation
May 2018 21-1-2	May 2018 21-1-21441-0	-	sidered	ud de con	eatures and s	a from existing site	ion was measure	

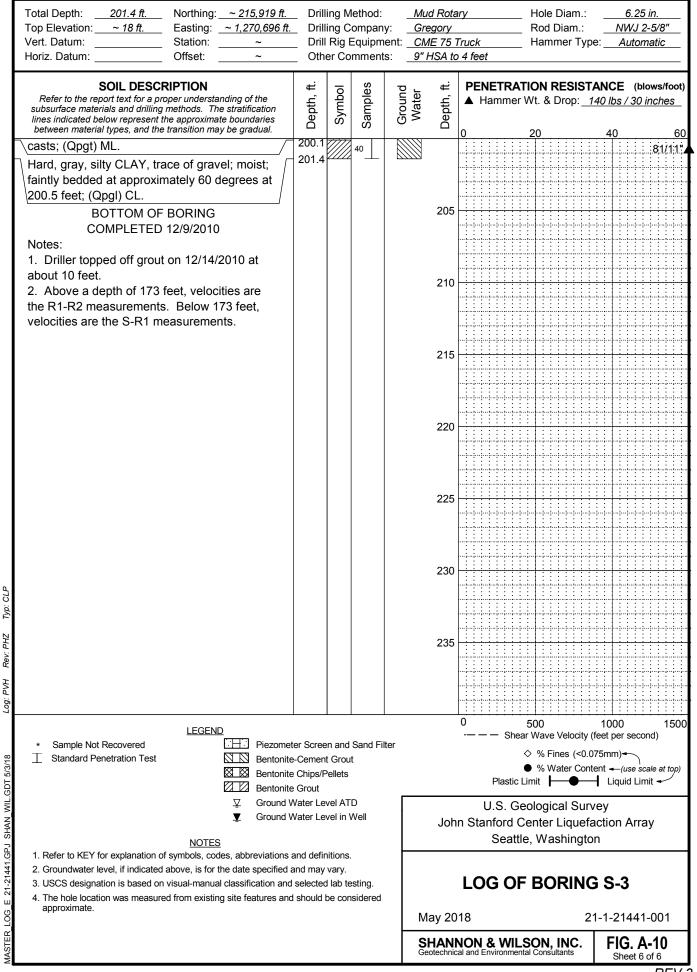
	Total Depth: Top Elevation: Vert. Datum: Horiz. Datum:			~ 215,929 ft. ~ 1,270,699 ft. ~ ~	Drill Drill	ling C I Rig I	lethod: ompany Equipme mments	r: <u>G</u> ent: <u>Cl</u>	ud Rota regory ME 75 1 HSA to	Rod Diam.: NWJ 2-5/8" Fruck Hammer Type: Automatic
		elow represent	roper understar g methods. The the approximat	e stratification e boundaries	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: <u>140 lbs / 30 inches</u> 0 20 40 60
									35	
									40	
									45	
									50	
Rev: PHZ Typ: CLP									55	
Log: PVH		CONTINUE	D NEXT SHEET	<u>.</u>						0 500 1000 1500
E 21-21441.GPJ SHAN_WIL.GDT 5/3/18		t Recovered enetration Test		Piezomete N Bentonite Bentonite Bentonite Bentonite Ground W ✓ Ground W	Cemen Chips/F Grout /ater Le	t Grou Pellets vel AT	t	er	Johi	 Silear Wave Velocity (leer per second) % Fines (<0.075mm) % Water Content(use scale at top) Plastic Limit - Liquid Limit - U.S. Geological Survey n Stanford Center Liquefaction Array Seattle, Washington
	2. Groundwater 3. USCS designa	level, if indicated ation is based or	of symbols, code d above, is for th n visual-manual	es, abbreviations a ne date specified a classification and g site features and	nd may selected	vary. d lab te	esting.		/lay 20	LOG OF BORING S-2
MASTER_LOG									-	NON & WILSON, INC. al and Environmental Consultants FIG. A-9 Sheet 2 of 6 REV 3

Total Depth: Top Elevation: Vert. Datum:	155 ft. ~ 18 ft.		~ 215,929 ft. ~ 1,270,699 ft. ~	Dril	ling C	ethod: ompany: Equipme	Gre	id Rota egory 1E 75 1	Rod Diam.: NWJ 2-5/8"
subsurface mat	SOIL DESC eport text for a pr erials and drilling below represent rial types, and the	roper understan methods. The the approximate	e stratification e boundaries	Depth, ft.	er Co IoquuS	Samples Samples	Ground Water	Depth, ft.	0 4 feet PENETRATION RESISTANCE (blows/foor ▲ Hammer Wt. & Drop: <u>140 lbs / 30 inches</u> 0 20 40 6
								65	
								70	
								75	
								80	
	CONTINUED of Recovered Penetration Test		Piezomete Bentonite Bentonite	-Cemer Chips/F	t Grou		un and a second se		0 500 1000 150 Shear Wave Velocity (feet per second) ◇ % Fines (<0.075mm) ● % Water Content(use scale at top) Plastic Limit Liquid Limit
 Groundwater USCS design The hole local 	level, if indicated nation is based or ation was measur	NOTES of symbols, code d above, is for th n visual-manual	Bentonite Ground W Ground W Ground W so, abbreviations a ne date specified a classification and g site features and	/ater Le /ater Le and defin ind may selected	nitions. vary. d lab te	Vell sting.		Joh	U.S. Geological Survey n Stanford Center Liquefaction Array Seattle, Washington
approximate.								lay 20 HANN	18 21-1-21441-001 NON & WILSON, INC. Bal and Environmental Consultants FIG. A-9 Sheet 3 of 6 REV

	Total Depth: _ Top Elevation: _	155 ft. ~ 18 ft.		~ 215,929 ft. ~ 1,270,699 ft.			lethod: ompany		ud Rota regory	nry	Hole Diam.: Rod Diam.:	8 NWJ	in. 2-5/8"
\ \	Vert. Datum:		Station:	~	Dril	I Rig I	Equipme	ent: <u>C</u>	ME 75 1		Hammer Type		
Ľ	Horiz. Datum: _		_ Offset: _	~	Oth	er Co	mments	: <u>9'</u>	' HSA to	o 4 feet			
		rials and drilling	roper understar g methods. The the approximate	e stratification e boundaries	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.		TION RESISTA Wt. & Drop: <u>1</u> 20		
				_									
										::::::::			
									95				
									100				
									105				
									100	<u></u>			
											: : : : : : : : : : : : : : : : :		
									110				
									115				
										: : : : : : : \ : : : : : : : : : \	X : : : : : : : : : : : : : : : : : :		
		CONTINUE	D NEXT SHEET										
		CONTINUEL	LEGEND							0	500	1000	150
	* Sample Not			Piezomete	er Scree	en and	Sand Filt	er			ar Wave Velocity (i		ond)
	Standard Pe	netration Test		Bentonite Bentonite			t				 % Fines (<0.0 % Water Contended 		cale at top)
				Bentonite		CIICLS				Plastic I	_imit	Liquid Li	mit 🛹
											eological Surv		
					ater Le	ever in v	veii		Joh		enter Liquefa		ay
	1. Refer to KEY f	or explanation	NOTES	es, abbreviations a	ind defi	nitions				Seattl	e, Washingto	1	
	 Groundwater le USCS designation 	evel, if indicated tion is based of	d above, is for th n visual-manual	ne date specified a classification and g site features and	nd may selecte	' vary. d lab te	esting.			LOG OF	BORING	S-2	
	approximate.			, <u></u>		501			/lay 20	18	2	-1-2144	1-001
								-	-	NON & WIL		FIG.	

Total Depth: 155 ft. Top Elevation: ~ 18 ft.	Northing: <u>~ 215,929 ft.</u> Easting: ~ 1,270,699 ft.		-	lethod:		lud Rota regory	ary	Hole Diam.:		<u>3 in.</u> J 2-5/8"
Vert. Datum: $\sim 18 \pi$.	Easting: $\sim 1,270,699 \pi$. Station: \sim	 Drilling Company: Drill Rig Equipment: 				regory ME 75	Truck	Hammer Type:		omatic
Horiz. Datum:	Offset: ~		-	mments		" HSA to				
SOIL DESC Refer to the report text for a pr subsurface materials and drilling lines indicated below represent between material types, and the	oper understanding of the methods. The stratification he approximate boundaries	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.		ION RESISTAN Wt. & Drop: <u>140</u>		0 inches
···· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·								<u>20</u>	40	<u> </u>
								,		
						125				
						125				
								$\left \right\rangle$		
								1		
						130				
								$\begin{array}{c c} \vdots & \vdots \\ \vdots & \vdots &$		
						135				
Loose to dense(?), black		140.0				140				
dark gray-brown, slightly sandy SILT; wet; locally to										
scattered silty sand layers	-									
fragments and seams wit	h organics; (He/Ha)			2						
ML. - Sampler collected at 14	2.5 feet was overfull					145				
and bulging; blow coun				3				•		
representative.										
Very soft, dark gray-brow	n slightly fine sandy	148.0	$\left + + + \right $							
clayey SILT; wet; trace of										
CONTINUEL							0	<u> : : : : : : : :</u> 500 1	000	1500
* Sample Not Recovered	LEGEND Piezome	ter Scree	en and	Sand Filte	er			Wave Velocity (fee	•	cond)
☐ Standard Penetration Test		e-Cemer		t				 % Fines (<0.075 % Water Content 		scale at top)
	Bentonit		Pellets					mit 🖂 🕂		
	=	Water Le					U.S. Ge	ological Surve	y	
	Ţ Ground	Water Le	vel in	Well		Joh		enter Liquefact	tion Ai	ray
1 Defer to KEV for avalance	NOTES	and daf	oitions				Seattle	, Washington		
 Refer to KEY for explanation of Groundwater level, if indicated 	-									
3. USCS designation is based or	visual-manual classification and	d selected	d lab te	-			LOG OF	BORING	S-2	
 The hole location was measure approximate. 	ea from existing site features and	a snould	be cor	sidered	.	10:100	10	04	1 044	11 004
					-	May 20				41-001
						спуиі	NON & WILS	SON INC	FIG	. A-9

	Total Depth: 155 ft. Northing: ~ 215,929 ft. Top Elevation: ~ 18 ft. Easting: ~ 1,270,699 ft. Vert. Datum: Station: ~ Horiz. Datum: Offset: ~	_ Drill _ Drill	ling C Rig	/lethod: Company Equipme omments	r: <u> </u>	lud Rota regory ME 75 1 ' HSA to	Rod Diam.: <u>Fruck</u> Hammer Typ	<u>8 in.</u> <u>NWJ 2-5/8"</u> e: <u>Automatic</u>		
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRATION RESIST ▲ Hammer Wt. & Drop:	, , , , ,		
Log: PVH Rev: PHZ Typ: CLP	BOTTOM OF BORING COMPLETED 12/13/2010 Notes: 1. Contacts above the sampling zone were estimated based on adjacent borings, cuttings, and drill action. 2. Driller used a 6.25-inch tricone bit for initial drilling and sampling; first installation attempt failed on 12/10/2010 due to broken PVC casing. Boring was redrilled on 12/13/2010, using 7-7/8-inch tricone; second installation attempt failed due to broken PVC bottom cap. Third installation attempt succeeded after redrilling on 12/14/2010. 3. Driller topped off grout seal at about 15 feet on 12/21/2010. 4. Above a depth of 133 feet, velocities are the R1-R2 measurements. Below 133 feet, velocities are the S-R1 measurements.	155.0		4		155 160 165 170				
21-21441.GPJ SHAN_WIL.GDT 5/3/18	Sample Not Recovered Standard Penetration Test Standard Penetration Test Standard Penetration Test Bentonite Dimension Ground V T Standard Penetration of symbols, codes, abbreviations a	-Cemen Chips/F Grout Vater Le Vater Le	t Grou Pellets vel AT vel in	ſD Well	er	0 500 1000 Shear Wave Velocity (feet per second) ◇ % Fines (<0.075mm) ● % Water Content(use scale a Plastic Limit				
ш	 Groundwater level, if indicated above, is for the date specified a USCS designation is based on visual-manual classification and The hole location was measured from existing site features and approximate. 	selected	d lab te	-		May 20		G S-2 1-1-21441-001		
MASTER_LOG						-	NON & WILSON, INC. al and Environmental Consultants	FIG. A-9 Sheet 6 of 6		


Total Depth: 201.4 ft. Northing: ~ 215,919 ft. Top Elevation: ~ 18 ft. Easting: ~ 1,270,696 ft. Vert. Datum: Station: ~		_ Dri	lling C	_ 0			Rota gory 75 T	ry Truck	Hole Diam.: <u>6.25 in.</u> Rod Diam.: <u>NWJ 2-5/8'</u> Hammer Type: <u>Automatic</u>		5/8"			
	ials and drilling low represent	proper understand g methods. The the approximate	stratification boundaries	Depth, ft.	ner Co Joquus	Samples	-	Water 6	Depth, ft. S	A feet PENETRAT ▲ Hammer			•	nches
	types, and in	e transition may		0.5						0	20	40)	60
Brown, silty, fi coarse GRAV Very loose, da	EL; moist;	(Hf) GM.		3.0						1				
trace of clay; r (Hf) ML. - Wet below a	noist; trace	e of shell frag	-			1	ng Drilling 🖂		5	О/18" (WOH) /	•			♦
Very soft, blac sand; wet; trac organics, trace	ce to scatte	ered wood ar	nd fine	10.5		2	Duri 11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1		10	0/18" (WOH)	Ху			
						3			15	0/18" (WOH)	/		•	
silty, fine to m scattered woo	Medium dense, black, trace of silt to slightly silty, fine to medium SAND; wet; trace to scattered wood, fine organics, and shell ragments; (Ha) SP/SP-SM.	e to	20.6		4			20		•				
					5			30	↓ ↓ ↓ ↓					
Madium dana			cille fine	35.5		6 			35	- ¢				
Medium dense to medium SA organics, and	ND; wet; tr	race of wood)» [
SP-SM/SM.	CONTINUE	D NEXT SHEET									500	100		4500
* Sample Not ∐ Standard Pe	Recovered netration Test	l	Piezomet Piezomet Bentonite Bentonite Bentonite	e-Ceme e Chips/ e Grout	nt Grou Pellets	t	lter			Plastic L	r Wave Velocit ◇ % Fines (<0 ● % Water Co .imit ↓	y (feet p).075mm ontent - Lic	er secon	le at top)
		NOTES		Vater L	evel in '	Well			Johi	n Stanford C	eological Su enter Lique e, Washing	factio	n Array	y
 Refer to KEY for explanation of symbols, codes, abbreviations a Groundwater level, if indicated above, is for the date specified a USCS designation is based on visual-manual classification and The hole location was measured from existing site features and 			and mag	y vary. ed lab te	esting.				LOG OF	BORIN	G S	-3		
approximate.									y 20				21441-	
								SH		ION & WIL	SON INC	I FI	IG. A-	.10

			ethod:		ud Rota	<u> </u>
Easting: <u>~ 1,270,696 ft.</u>			ompany		egory	Rod Diam.: <u>NWJ 2-5/8"</u> Truck Hammer Type: Automatic
	-	-				
CRIPTION proper understanding of the ing methods. The stratification nt the approximate boundaries	Depth, ft.	Symbol	Samples	Ground Water		PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: <u>140 lbs / 30 inches</u>
ined below t, with scattered layers nd silty, fine sand, t organics; layers			8 9 10 11 12 13 14 		45 50 55 60 65 70	
IED NEXT SHEET			15		75	
LEGEND Image: Stream of the stream					1ay 201	0 500 1000 1500
	Station: ~ Offset: ~ CRIPTION proper understanding of the ing methods. The stratification in the approximate boundaries the transition may be gradual. ained below t, with scattered layers ained below t, with scattered layers add silty, fine sand, torganics; layers torganics; layers begrees. Piezometa JED NEXT SHEET Dentonite Market Sentonite Market Sentonite Market Sentonite Market Ground W NOTES not symbols, codes, abbreviations a ted above, is for the date specified a on visual-manual classification and			Station: ~ Drill Rig Equipmen Offset: ~ Other Comments: SCRIPTION # I I ing methods. The stratification I I I ined below I I I I the approximate boundaries I I I I ained below I IIII Rig Equipmen IIII Rig Equipmen ained below I IIII Rig Equipment IIII Rig Equipment ained below IIII Rig Equipment IIIII Rig Equipment ide transition may be gradual. IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		Station: ~ Drill Rig Equipment: CME 75 Offset: ~ Other Comments: 9'HSA to ing methods. The stratification in the approximate boundaries the transition may be gradual. # 0

Total Depth: 201.4 ft. Northing: ~ 215,919 ft. Top Elevation: ~ 18 ft. Easting: ~ 1,270,696 ft. Vert. Datum: Station: ~ Horiz. Datum: Offset: ~	_ Dril _ Dril	ling Me ling Co I Rig E her Cor	ompan quipm	ent:	Mud Rota Gregory CME 75 T 9" HSA to	Rod Diam.: <u>NWJ 2-5/8"</u> <u>Fruck</u> Hammer Type: <u>Automatic</u>
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: <u>140 lbs / 30 inches</u> 0 20 40 60
 With numerous pumice grains at approximately 80 feet. Loose to medium dense, interbedded black, 	80.1		16			
slightly silty to silty, fine and fine to medium SAND and dark gray-brown, trace of fine sand to fine sandy SILT, trace of clay; wet; trace to abundant organics, approximately 10-degree bedding; (Ha/He) SM/SP-SM/ML.			17		85	
			18		90	
Medium dense to dense, black, slightly silty to	96.0		19		95	
silty, fine SAND; wet; trace of shell fragments and organics; (Ha) SM/SP-SM.			—		100	
 Possible pumice grains at approximately 100 and 116 feet. 			20			
			21		105	
			22		110	$\rightarrow \bullet$
 Interbedded with layers of fine sandy silt below 115.5 feet. 			23		115	
CONTINUED NEXT SHEET						
LEGEND * Sample Not Recovered ☐ Standard Penetration Test	e-Cemer e Chips/I	nt Grout		ter		0 500 1000 1500
⊊ Ground [™] ⊈ Ground [™] <u>NOTES</u>					Joh	U.S. Geological Survey n Stanford Center Liquefaction Array Seattle, Washington
 Refer to KEY for explanation of symbols, codes, abbreviations Groundwater level, if indicated above, is for the date specified USCS designation is based on visual-manual classification and The hole location was measured from existing site features an approximate. 	and may d selecte	/ vary. d lab tes	•			LOG OF BORING S-3
opproximuto.					May 20	
					SHANI Geotechnic	NON & WILSON, INC. al and Environmental Consultants FIG. A-10 Sheet 3 of 6

Total Depth: 201.4 ft. Top Elevation: ~ 18 ft. Vert. Datum:		Dril	ling (I Rig	Method: Company Equipme comments	: <u>C</u> ent: <u>C</u>	lud Rota Gregory CME 75 1 " HSA to	Rod Diam.: <u>NWJ 2-5/8"</u> Truck Hammer Type: <u>Automatic</u>
Refer to the report text for a subsurface materials and dril lines indicated below represe	SCRIPTION a proper understanding of the ling methods. The stratification ant the approximate boundaries the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: <u>140 lbs / 30 inches</u> 0 20 40 △ 60
Dense, black, slightly s trace of shell fragment		- 123.0		24 25 		125	
Dense, black, silty, fine organics; scattered sea sandy silt; (Ha) SM.	e SAND; wet; trace of ams of dark brown, fine	- 128.0		26		130	
silty, fine SAND to slig sandy SILT, trace of cl fragments, trace to sca	Interbedded loose to medium dense, black, silty, fine SAND to slightly fine sandy to fine sandy SILT, trace of clay; wet; scattered shell fragments, trace to scattered organics;	- 135.2	<u></u>	27		135	
(He/Ha) ML/SM.				28 29		140 145	
Very soft, dark brown- of fine sand; wet; scatt (He) ML.	gray, clayey SILT, trace ered shell fragments;	- 148.0		30		150	0/18" (WOR)
Very soft, dark brown- SILT; wet; massive, so trace of organics; (He)	attered shell fragments,	- 153.0		31		155	€/24": (WOR)
CONTIN							$\begin{array}{c c c c c c c c c c c c c c c c c c c $
* Sample Not Recovered ☐ Standard Penetration Te	st III Bentonit IIII Bentonit IIIII Bentonit IIIII Bentonit IIIII Ground	e-Cemer e Chips/I	nt Gro Pellets evel A ⁻	тD	er	Joh	Shear Wave Velocity (feet per second)
 Refer to KEY for explanation Groundwater level, if indication USCS designation is based The hole location was mean approximate. 	and may d selecte	vary. d lab t	esting.		May 20	Seattle, Washington LOG OF BORING S-3 18 21-1-21441-001	
						-	NON & WILSON, INC. al and Environmental Consultants FIG. A-10 Sheet 4 of 6

Total Depth: 201.4 ft. Northing: ~ 215,919 ft. Top Elevation: ~ 18 ft. Easting: ~ 1,270,696 ft. Vert. Datum: Station: ~ Horiz. Datum: Offset: ~	_ Dril _ Dril	ling (I Rig	Method: Company Equipme omments	r: <u>(</u> ent: <u>(</u>	Mud Rota Gregory CME 75 T 9" HSA to	Rod Diam.: <u>NWJ 2-5/8"</u> Truck Hammer Type: <u>Automatic</u>
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: <u>140 lbs / 30 inches</u> 0 20 40 60
Medium dense(?), dark brown-gray, fine sandy	163.0		32			19/24" (WOR)
SILT and slightly silty to silty, fine to medium SAND; wet; trace of shell fragments, scattered 10-degree laminations; (He/Ha) ML/SM/SP-SM.	165.6		33		165	
 Approximately 60-degree contact with underlying clay. Very soft to stiff, dark gray-brown, slightly 			34		170	
clayey SILT, trace of fine sand; moist to wet; trace of shells and organics, scattered 60-degree bedding, 60-degree sand parting at approximately 166 feet; (He) ML.	173.0 175.2		35		175	95/10".
- 0.3-foot layer of silty, fine SAND at 170.2 feet (approximately 60-degree contact). Transition from sandy, gravelly, silty CLAY to dark gray-brown, silty, clayey, sandy GRAVEL;	178.0		36		180	
wet; trace of organics, scattered coarse shell fragments; (Hrw/Hb) GC/GM. Very dense, green-gray, slightly silty to silty,	183.0				185	
sandy GRAVEL, trace of clay; wet; slightly weathered, diverse lithology (including intrusives); (Hrw/Hb) GM/GW-GM.			37			50/5*2
Very stiff, blue-gray, gravelly, silty CLAY, trace of sand; moist; scattered sand seams and organic or iron-oxide seams, scattered laminations; (Hrw/Qvrl) CH.			38 <u>⊤</u>		190	\$
Very dense, green-gray, slightly silty, sandy GRAVEL to slightly silty, fine gravelly SAND; wet; slightly weathered, diverse lithology; (Qpgo) GP-SM/SP-SM.	194.5		39 		195	50/5".
Hard, gray, slightly sandy, slightly fine gravelly, clayey SILT; moist; massive, gravels form CONTINUED NEXT SHEET						0 500 1000 1500
	e-Cemer e Chips/F	t Gro		er		 → — — Shear Wave Velocity (feet per second) ◇ % Fines (<0.075mm) → ● % Water Content → (use scale at top) Plastic Limit ↓ ↓ Liquid Limit →
L Standard Penetration Test Standard Penetration Test Bentonite D Bentonite D Ground V ↓ Ground V NOTES A Refer to KEY for explanation of symbols codes abbreviations :	Vater Le	vel in	Well		Johr	U.S. Geological Survey n Stanford Center Liquefaction Array Seattle, Washington
 Groundwater level, if indicated above, is for the date specified a USCS designation is based on visual-manual classification and 	 Refer to KEY for explanation of symbols, codes, abbreviations and definitions. Groundwater level, if indicated above, is for the date specified and may vary. USCS designation is based on visual-manual classification and selected lab testing. The hole location was measured from existing site features and should be considered approximate. 					LOG OF BORING S-3
					May 20 SHANN Geotechnica	18 21-1-21441-001 NON & WILSON, INC. FIG. A-10 Sheet 5 of 6 al and Environmental Consultants Sheet 5 of 6

Typ: Rev: PHZ PVH Log: E 21-21441.GPJ SHAN WIL.GDT 5/3/18 LOG

APPENDIX B Downhole Geophysics

CONTENTS

 "Boring Geophysics in Borings S-2 and S-3, USGS John Stanford Center Liquefaction Array, Seattle, Washington," Fulcrum Report 12073 rev 1, October 8, 2012 (48 pages)

BORING GEOPHYSICS IN BORINGS S-2 AND S-3

USGS JOHN STANFORD CENTER LIQUEFACTION ARRAY SEATTLE, WASHINGTON

Report 12073 rev 1

October 8, 2012

BORING GEOPHYSICS IN BORINGS S-2 AND S-3

USGS JOHN STANFORD CENTER LIQUEFACTION ARRAY SEATTLE, WASHINGTON

Report 12073 rev 1

October 8, 2012

Prepared for:

United States Geologic Survey. C/O University of Washington Department of Earth and Space Sciences Box 351310 Seattle, Washington 98195-1310 (206) 553 - 1937

Prepared by

Fulcrum Consulting 12010 Wards Ferry Road Groveland, California 95321 (818) 414-7919

TABLE OF CONTENTS

TABLE OF CONTENTS	3
TABLE OF FIGURES	4
TABLE OF TABLES	4
INTRODUCTION	5
SCOPE OF WORK	5
INSTRUMENTATION	7
SUSPENSION INSTRUMENTATION	7
NATURAL GAMMA INSTRUMENTATION	9
MEASUREMENT PROCEDURES	11
SUSPENSION MEASUREMENT PROCEDURES	11
NATURAL GAMMA MEASUREMENT PROCEDURES	11
DATA ANALYSIS	13
SUSPENSION ANALYSIS	13
NATURAL GAMMA ANALYSIS	15
RESULTS	16
SUSPENSION RESULTS	
NATURAL GAMMA RESULTS	
SUMMARY	17
DISCUSSION OF SUSPENSION RESULTS	17
DISCUSSION OF NATURAL GAMMA RESULTS	
QUALITY ASSURANCE	
SUSPENSION DATA RELIABILITY	19

Table of Figures

Figure 1: Concept illustration of P-S logging system	20
Figure 2. Example of filtered (1400 Hz lowpass) record	21
Figure 3. Example of unfiltered record	22
Figure 4. Boring S-2, Suspension R1-R2 P- and S _H -wave velocities	23
Figure 5. Boring S-3, Suspension R1-R2 P- and S _H -wave velocities	27
Figure 6. Boring S-3, Natural gamma log	31

Table of Tables

Table 1. Boring logging dates and locations	5
Table 2. Logging dates and depth ranges	12
Table 3. Boring S-2, Suspension R1-R2 depths and P- and S_H -wave velocities	24
Table 4. Boring S-3, Suspension R1-R2 depths and P- and S_H -wave velocities	28

APPENDICES

- APPENDIX A SUSPENSION VELOCITY MEASUREMENT QUALITY ASSURANCE SUSPENSION SOURCE TO RECEIVER ANALYSIS RESULTS
- APPENDIX B NATURAL GAMMA LOGS
- APPENDIX C GEOPHYSICAL LOGGING SYSTEMS NIST TRACEABLE CALIBRATION RECORDS

INTRODUCTION

Boring geophysical measurements were collected in two PVC cased borings as a component of the installation of the John Stanford Center Liquefaction Array, in Seattle, Washington. Geophysical data acquisition was performed on January 17, 2012 by Robert Steller of Fulcrum Consulting. Data analysis and report preparation was performed by Robert Steller of Fulcrum Consulting. The work was performed under subcontract with the United States geologic Survey (USGS), with Tom Yelin as the point of contact for USGS.

This report describes the field measurements, data analysis, and results of this work.

SCOPE OF WORK

This report presents the results of boring geophysical measurements collected in two 4-inch diameter PVC cased borings, as detailed below. The purpose of these studies were to supplement stratigraphic information obtained during USGS's soil sampling program and to acquire shear wave velocities and compressional wave velocities as a function of depth.

BORING	DAT	TES L	OCATION (FEET)	ELEVATION
DESIGNATIO	DN LOGO	GED NORTHIN	NG EASTIN	G (FEET MSL)
S-2	1/17/2	2012 ~215,92	9 ~1,270,69	99 ~18
S-3	1/17/2	2012 ~215,91	9 ~1,270,69	96 ~18

Location information provided by Shannon & Wilson.

Table 1	Boring	logging	dates and	locations
---------	--------	---------	-----------	-----------

The OYO Suspension Logging System was used to obtain in-situ horizontal shear and compressional wave velocity measurements at 1.6-foot intervals. The acquired data were analyzed and a profile of velocity versus depth was produced for both compressional and horizontally polarized shear waves.

A detailed reference for the velocity measurement techniques used in this study is:

<u>Guidelines for Determining Design Basis Ground Motions</u>, Report TR-102293, Electric Power Research Institute, Palo Alto, California, November 1993, Sections 7 and 8.

A Robertson Geologging 3ACS caliper probe was used to collect natural gamma data at 0.05 foot intervals. Measurement procedures followed these ASTM standards:

- ASTM D5753-05 (Re-approved 2010), "Planning and Conducting Borehole Geophysical Logging"
- ASTM D6274-10, "Conducting Borehole Geophysical Logging Gamma"

INSTRUMENTATION

Suspension Instrumentation

Suspension soil velocity measurements were performed using the suspension PS logging system, manufactured by OYO Corporation, and their subsidiary, Robertson Geologging. This system directly determines the average velocity of a 3.3 feet high segment of the soil column surrounding the boring of interest by measuring the elapsed time between arrivals of a wave propagating upward through the soil column. The receivers that detect the wave, and the source that generates the wave, are moved as a unit in the boring producing relatively constant amplitude signals at all depths.

The suspension system probe consists of a combined reversible polarity solenoid horizontal shear-wave source (S_H) and compressional-wave source (P), joined to two biaxial receivers by a flexible isolation cylinder, as shown in Figure 1. The separation of the two receivers is 3.3 feet, allowing average wave velocity in the region between the receivers to be determined by inversion of the wave travel time between the two receivers. The total length of the probe as used in these surveys is approximately 25 feet, with the center point of the receiver pair 12.5 feet above the bottom end of the probe.

The probe receives control signals from, and sends the receiver signals to, instrumentation on the surface via an armored 4-conductor cable. The cable is wound onto the drum of a winch and is used to support the probe. Cable travel is measured to provide probe depth data, using a 1.3-foot circumference sheave fitted with a digital rotary encoder.

The entire probe is suspended in the boring by the cable, therefore, source motion is not coupled directly to the boring walls; rather, the source motion creates a horizontally propagating impulsive pressure wave in the fluid filling the boring and surrounding the source. This pressure wave is converted to P and S_H -waves in the surrounding soil as it passes through the casing and grout annulus and impinges upon the wall of the boring. These waves propagate through the soil

and rock surrounding the boring, in turn causing a pressure wave to be generated in the fluid surrounding the receivers as the soil waves pass their location. Separation of the P and S_{H} -waves at the receivers is performed using the following steps:

- Orientation of the horizontal receivers is maintained parallel to the axis of the source, maximizing the amplitude of the recorded S_H -wave signals.
- At each depth, S_H-wave signals are recorded with the source actuated in opposite directions, producing S_H-wave signals of opposite polarity, providing a characteristic S_Hwave signature distinct from the P-wave signal.
- The 7.1-foot separation of source and receiver 1 permits the P-wave signal to pass and damp significantly before the slower S_H-wave signal arrives at the receiver. In faster soils or rock, the isolation cylinder is extended to allow greater separation of the P- and S_Hwave signals.
- In saturated soils, the received P-wave signal is typically of much higher frequency than the received S_H-wave signal, permitting additional separation of the two signals by low pass filtering.
- 5. Direct arrival of the original pressure pulse in the fluid is not detected at the receivers because the wavelength of the pressure pulse in fluid is significantly greater than the dimension of the fluid annulus surrounding the probe, preventing significant energy transmission through the fluid medium.

In operation, a distinct, repeatable pattern of impulses is generated at each depth as follows:

- 1. The source is fired in one direction producing dominantly horizontal shear with some vertical compression, and the signals from the horizontal receivers situated parallel to the axis of motion of the source are recorded.
- 2. The source is fired again in the opposite direction and the horizontal receiver signals are recorded.
- 3. The source is fired again and the vertical receiver signals are recorded. The repeated source pattern facilitates the picking of the P and S_H-wave arrivals; reversal of the source changes the polarity of the S_H-wave pattern but not the P-wave pattern.

The data from each receiver during each source activation is recorded as a different channel on the recording system. The suspension PS system has six channels (two simultaneous recording channels), each with a 1024 sample record. The recorded data are displayed as six channels with a common time scale. Data are stored on disk for further processing.

Review of the displayed data on the recorder or computer screen allows the operator to set the gains, filters, delay time, pulse length (energy), sample rate, and summing number to optimize the quality of the data before recording. Verification of the calibration of the suspension PS digital recorder is generally performed every twelve months using a NIST traceable frequency source and counter, as outlined in Appendix C.

Natural Gamma Instrumentation

Formation natural gamma data were collected using a 3ACS model caliper probe, S/N 5368, manufactured by Robertson Geologging, Ltd. The probe is 6.8 feet long, and 1.5 inches in diameter.

This probe may be useful in the following studies:

- Bed boundary identification
- Strata correlation between borings
- Strata geometry and type (shale indication)

The probe receives control signals from, and sends the digitized measurement values to, a Robertson Micrologger II on the surface via an armored 4 conductor cable. The cable is wound onto the drum of a winch and is used to support the probe. Cable travel is measured to provide probe depth data, using a 1.3 foot circumference sheave fitted with a digital rotary encoder. The probe and depth data are transmitted by USB link from the Micrologger unit to a laptop computer where it is displayed and stored on hard disk.

Natural gamma measurements rely upon small quantities of radioactive material contained in soil and rocks to emit gamma radiation as they decay. Trace amounts of uranium and thorium are present in a few minerals, where potassium-bearing minerals such as feldspar, mica and clays will include traces of a radioactive isotope of potassium. These emit gamma radiation as they decay with an extremely long half-life. This radiation is detected by scintillation - the production of a tiny flash of light when gamma rays strike a crystal of sodium iodide. The light is converted into an electrical pulse by a photomultiplier tube. Pulses above a threshold value of 60 KeV are counted by the probe's microprocessor. The measurement is useful because the radioactive elements are concentrated in certain soil and rock types e.g. clay or shale, and depleted in others e.g. sandstone or coal.

MEASUREMENT PROCEDURES

Suspension Measurement Procedures

Each boring was logged while filled with clear water. All measurement depths were referenced to ground level. The probe was positioned with the top of the probe at ground level, and the electronic depth counter was set to 8.2 feet, the distance between the mid-point of the receivers and the top of the probe. The probe was then lowered to the bottom of the boring, stopping at 1.6-foot intervals to collect data, as summarized in Table 2.

At each measurement depth the measurement sequence of two opposite horizontal records and one vertical record was performed, and the gains were adjusted as required. The data from each depth were viewed on the computer display, checked, and recorded on disk before moving to the next depth.

Upon completion of the measurements, the probe zero depth indication at the depth reference point was verified prior to removal from the boring.

Natural Gamma Measurement Procedures

Boring S-3 was logged while filled with clear water. The probe was positioned with the top of the probe at ground surface, and the electronic depth counter was set to the specified length of the probe. The probe was lowered to the bottom of the boring where data acquisition was begun, and the probe was returned to the surface at 10 feet/sec, collecting data continuously at 0.05-foot spacing, as summarized in Table 2. Measurements followed ASTM D6274-10, "Conducting Borehole Geophysical Logging – Gamma". This probe was not calibrated in the field, as it is used to provide qualitative measurements, not quantitative values, and is used only to assist in picking transitions between stratigraphic units, as described in the ASTM standard.

Upon completion of the measurements, the probe zero depth indication at the depth reference point was verified prior to removal from the boring.

BORING NUMBER	TOOL AND RUN NUMBER	DEPTH RANGE (FEET)	OPEN HOLE (FEET)	DEPTH TO BOTTOM OF CASING (FEET)	SAMPLE INTERVAL (FEET)	DATE LOGGED
S-2	SUSPENSION 1	3.3 – 132.9	145.4	PVC CASED	1.6	1/17/2012
S-3	SUSPENSION 1	1.6 – 172.2	184.8	PVC CASED	1.6	1/17/2012
S-3	NATURAL GAMMA 1	184.8 - 0	184.8	PVC CASED	0.05	1/17/2012

Table 2. Logging dates and depth ranges

DATA ANALYSIS

Suspension Analysis

Using the proprietary OYO program PSLOG.EXE version 1.0, the recorded digital waveforms were analyzed to locate the most prominent first minima, first maxima, or first break on the vertical axis records, indicating the arrival of P-wave energy. The difference in travel time between receiver 1 and receiver 2 (R1-R2) arrivals was used to calculate the P-wave velocity for that 3.3-foot segment of the soil column. When observable, P-wave arrivals on the horizontal axis records were used to verify the velocities determined from the vertical axis data. The time picks were then transferred into a Microsoft Excel[®] template (Excel[®] version 2003 SP2) to complete the velocity calculations based upon the arrival time picks made in PSLOG.

The P-wave velocity over the 7.1-foot interval from source to receiver 1 (S-R1) was also picked using PSLOG, and calculated and plotted in Microsoft Excel[®], for quality assurance of the velocity derived from the travel time between receivers. In this analysis, the depth values as recorded were increased by 5.1 feet to correspond to the mid-point of the 7.1-foot S-R1 interval. Travel times were obtained by picking the first break of the P-wave signal at receiver 1 and subtracting 0.3 milliseconds, the calculated and experimentally verified delay from source trigger pulse (beginning of record) to source impact. This delay corresponds to the duration of acceleration of the solenoid before impact.

As with the P-wave records, using PSLOG, the recorded digital waveforms were analyzed to locate the presence of clear S_H -wave pulses, as indicated by the presence of opposite polarity pulses on each pair of horizontal records. Ideally, the S_H -wave signals from the 'normal' and 'reverse' source pulses are very nearly inverted images of each other. Digital FFT - IFFT lowpass filtering was used to remove the higher frequency P-wave signal from the S_H -wave signal. Different filter cutoffs were used to separate P- and S_H -waves at different depths, ranging from 300 Hz in the slowest zones to 2000 Hz in the regions of highest velocity. At each depth, the

filter frequency was selected to be at least twice the fundamental frequency of the $S_{\rm H}$ -wave signal being filtered.

Generally, the first maxima were picked for the 'normal' signals and the first minima for the 'reverse' signals, although other points on the waveform were used if the first pulse was distorted. The absolute arrival time of the 'normal' and 'reverse' signals may vary by +/- 0.2 milliseconds, due to differences in the actuation time of the solenoid source caused by constant mechanical bias in the source or by boring inclination. This variation does not affect the R1-R2 velocity determinations, as the differential time is measured between arrivals of waves created by the same source actuation. The final velocity value is the average of the values obtained from the 'normal' and 'reverse' source actuations.

As with the P-wave data, S_H -wave velocity calculated from the travel time over the 7.1-foot interval from source to receiver 1 was calculated and plotted for verification of the velocity derived from the travel time between receivers. In this analysis, the depth values were increased by 5.1 feet to correspond to the mid-point of the 7.1-foot S-R1 interval. Travel times were obtained by picking the first break of the S_H -wave signal at the near receiver and subtracting 0.3 milliseconds, the calculated and experimentally verified delay from the beginning of the record at the source trigger pulse to source impact.

Figure 2 shows an example of R1 - R2 measurements on a sample filtered suspension record. In Figure 2, the time difference over the 3.3-foot interval of 1.88 milliseconds for the horizontal signals is equivalent to an S_H -wave velocity of 1745 feet/second. Whenever possible, time differences were determined from several phase points on the S_H -waveform records to verify the data obtained from the first arrival of the S_H -wave pulse. Figure 3 displays the same record before filtering of the S_H -waveform record with a 1400 Hz FFT - IFFT digital lowpass filter, illustrating the presence of higher frequency P-wave energy at the beginning of the record, and distortion of the lower frequency S_H -wave by residual P-wave signal. Poisson's ratio is calculated and tabulated using the following relationship.

Poisson's Ratio,

$$\mathbf{v} = \frac{\left(\frac{\mathbf{v}_{s}}{\mathbf{v}_{p}}\right)^{2} - 0.5}{\left(\frac{\mathbf{v}_{s}}{\mathbf{v}_{p}}\right)^{2} - 1.0}$$

Where v_s is the S_H-wave velocity, and v_p is the P-wave velocity.

Natural Gamma Analysis

No analysis is required with the natural gamma data. Using Robertson WinLogger software version 1.5, these data were converted to LAS and PDF formats for transmittal to the client.

RESULTS

Suspension Results

Suspension R1-R2 P- and S_H -wave velocities are plotted in Figures 4 and 5. The suspension velocity data presented in these figures are presented in Tables 3 and 4. These plots and data are included in the Microsoft Excel[®] analysis file on the disk (CD-R) that accompanies this report.

P- and S_H -wave velocity data from R1-R2 analysis and quality assurance analysis of S-R1 data are plotted together in Appendix A as Figures A-1 and a-2 to aid in visual comparison. It should be noted that R1-R2 data are an average velocity over a 3.3 feet segment of the soil column; S-R1 data are an average over 7.1 feet, creating a significant smoothing relative to the R1-R2 plots. S-R1 data are presented in Appendix A as Tables A-1 and A-2 and included in the Microsoft Excel[®] analysis files.

Calibration procedures and records for the suspension PS measurement system are presented in Appendix C.

Natural Gamma Results

Natural gamma data are presented as single page logs in Figure 6. A multi-page log with 1in: 10ft scale is presented in Appendix B as Figure B-1 and as a .pdf file on the disk (CD-R) that accompanies this report. The raw data is available as a .LAS file on the disk as well.

SUMMARY

Discussion of Suspension Results

Suspension PS velocity data are ideally collected in an uncased or well grouted PVC cased, fluid filled boring drilled with rotary mud (rotary wash) methods. These borings presented poor suspension PS velocity data. The cause for this is unknown, as the equipment was subsequently used in an uncased boring with no difficulty. The usual explanations are poor grout coupling of the casing, though this is unlikely considering the experience of the drilling crew that placed the casing, and an enlarged or irregular walled boring. In Boring S-2, the first placement of casing was unsuccessful, and the boring was re-drilled to a larger diameter (nominal 7 - 7/8"). This larger diameter and the boring disruption caused by re-drilling may account for the particularly poor data quality in this boring.

Suspension PS velocity data quality is judged based upon 5 criteria:

- Consistent data between receiver to receiver (R1 R2) and source to receiver (S R1) data.
- 2. Consistent relationship between P-wave and S_H -wave (excluding transition to saturated soils)
- 3. Consistency between data from adjacent depth intervals.
- 4. Clarity of P-wave and S_H-wave onset, as well as damping of later oscillations.
- 5. Consistency of profile between adjacent boring, if available.

Boring S-3 data show good correlation between R1 - R2 and S - R1 S_H-wave data, though Pwave R1 - R2 and S - R1 do not correlate well with each other, or with the S_H-wave data. It is common in this area to not see correlation between S_H-wave and P-wave data due to changes in saturation from organic decomposition. Adjacent depth intervals provide similar velocities, indicating fairly consistent velocities at most depth intervals. P-wave and S_H-wave onsets were not generally clear, and arrivals were difficult to pick. Borings S-2 and S-3 do show similar trends in the velocity profiles, though data from S-2 is sparse and poor enough to be suspect. It is not recommended that the S-2 data be used for further analysis. Boring S-3 had several data points that could not be picked as R1-R2 data, but are covered by the S-R1 data, as presented in Appendix A. Boring S-3 data is an almost exact match to Boring SD-110 data, located approximately 250 feet south-west of S-3, and Boring SD-108, located approximately 1200 feet south-west of S-3. These data were collected for Shannon & Wilson on October 10, 2003 and August 28, 2003, as part of the Seattle Monorail Project. The good correlation between R1 – R2 and S – R1 S_H-wave data and close match to SB-110 and SB-108 provide confidence in the Boring S-3 S_H-wave data.

Discussion of Natural Gamma Results

The natural gamma profile from S-3 suggests thin interbedding of slightly varying materials. A relative increase in natural gamma response is observed at approximately 20 feet, corresponding to a transition into sands. A decrease in natural gamma response is observed at approximately 173 feet, corresponding to a transition into glacially over-consolidated till.

Quality Assurance

These boring geophysical measurements were performed using industry-standard or better methods for measurements and analyses. All work was performed under Fulcrum Consulting quality assurance procedures, which include:

- Use of NIST-traceable calibrations, where applicable, for field and laboratory instrumentation
- Use of standard field data logs
- Use of independent verification of velocity data by comparison of receiver-to-receiver and source-to-receiver velocities

Suspension Data Reliability

P- and S_H-wave velocity measurement using the Suspension Method gives average velocities over a 3.3 feet interval of depth. This high resolution results in the scatter of values shown in the graphs. Individual measurements are very reliable with estimated precision of +/- 5%. In cased borings, with uncertain grout bond, estimated precision is +/- 15%.

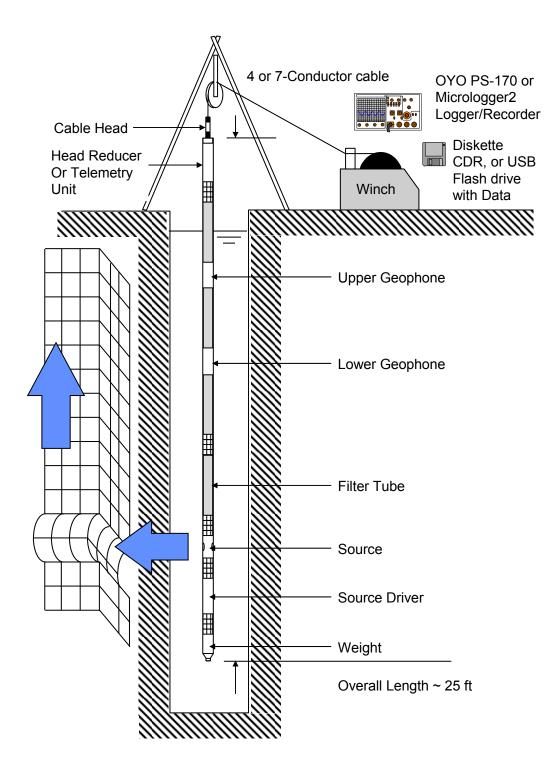


Figure 1: Concept illustration of P-S logging system

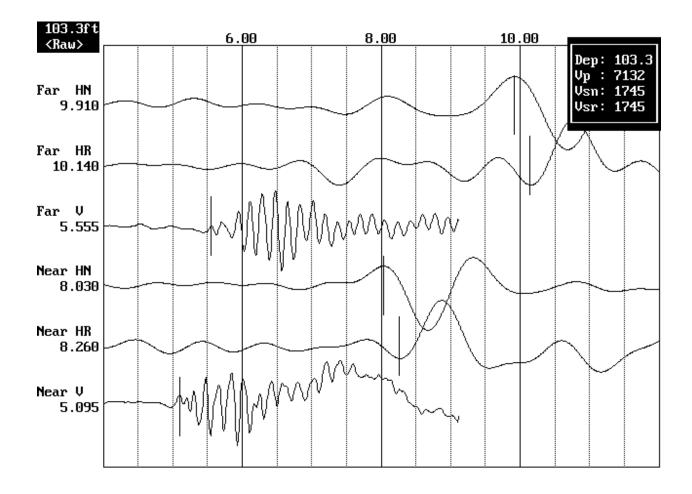


Figure 2. Example of filtered (1400 Hz lowpass) record

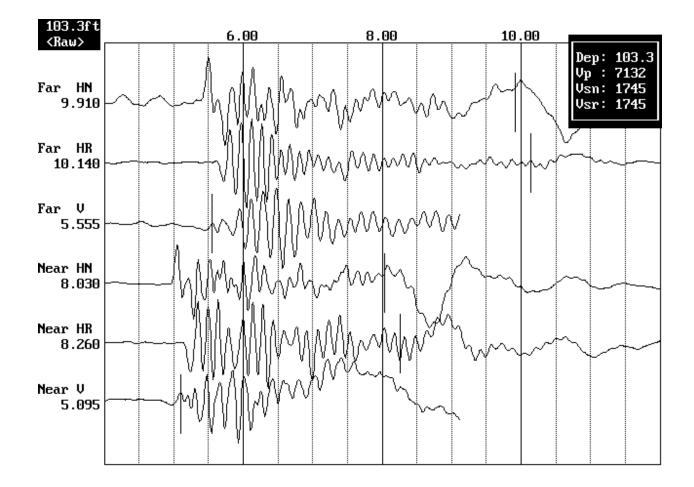


Figure 3. Example of unfiltered record

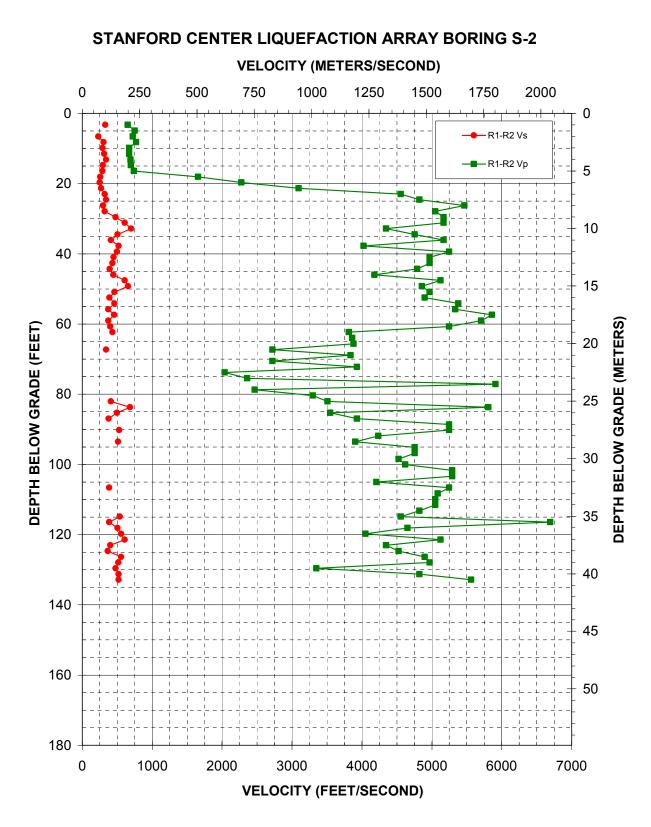


Figure 4. Boring S-2, Suspension R1-R2 P- and S_H-wave velocities

Table 3. Boring S-2, Suspension R1-R2 depths and P- and S_H-wave velocities

A	merican	Units			Metric U	nits	
Depth at	Vel	ocity		Depth at	Velo	ocity	
Midpoint				Midpoint			
Between			Poisson's	Between			Poisson's
Receivers	Vs	Vp	Ratio	Receivers	Vs	V _p	Ratio
(ft)	(ft/s)	(ft/s)		(m)	(m/s)	(m/s)	
3.28	328	651	0.33	2.0	300	1080	0.46
4.92		749		2.5	230	1200	0.48
6.56	229	723	0.44	3.0	260	1270	0.48
8.20	307	770	0.41	3.5	430	730	0.23
9.84	290	672	0.39	4.0	390	1130	0.43
11.48	315	672	0.36	4.5	350	980	0.43
13.12	342	692	0.34	5.0	330	1540	0.48
14.76	296	695	0.39	5.5	350	1240	0.46
16.40	290	739	0.41	6.0	360	1150	0.45
18.04	256	1657	0.49	6.5	420	1950	0.48
19.69	249	2278	0.49	7.0	400	1340	0.45
21.33	269	3095	0.50	7.5	410	1690	0.47
22.97	322	4557	0.50	8.0	370	1410	0.46
24.61	342	4825	0.50	8.5	400	1450	0.46
26.25	298	5468	0.50	9.0	420	1360	0.45
27.89	322	5047	0.50	9.5	390	1330	0.45
29.53	475	5167	0.50	10.0	350	1040	0.44
31.17	608	5167	0.49	10.5	310	880	0.43
32.81	698	4345	0.49	11.0	300	1080	0.46
34.45	505	4755	0.49	11.5	300	1160	0.46
36.09	410	5167	0.50	12.0	270	1360	0.48
37.73	521	4026	0.49	12.5	270	1490	0.48
39.37	497	5249	0.50	13.0	260	1550	0.49
41.01	449	4971	0.50	13.5	360	1750	0.48
42.65	432	4971	0.50	14.0	850	1600	0.31
44.29	395	4790	0.50	14.5	720	1590	0.37
45.93	443	4179	0.49	15.0	930	2120	0.38
47.57	608	5126	0.49	15.5	1270	2820	0.37
49.21	656	4861	0.49	16.0	1350	2990	0.37
50.85	462	4971	0.50	16.5	1310	3080	0.39
52.49	391	4897	0.50	17.0	1330	2570	0.32
54.13	462	5378	0.50	17.5	1400	2670	0.31
55.77	373	5335	0.50	18.0	1510	2990	0.33
57.41	456	5859	0.50	18.5	900	2820	0.44
59.06	373	5706	0.50				
60.70	400	5249	0.50				

A	merican	Units			Metric U	nits	
Depth at	Vel	ocity		Depth at	Velo	ocity	
Midpoint				Midpoint			
Between	v	V	Poisson's	Between	V	v	Poisson's
Receivers	V _s	V _p	Ratio	Receivers	V _s	V _p	Ratio
(ft)	(ft/s)	(ft/s)		(m)	(m/s)	(m/s)	
62.34	432	3815	0.49	1.0	100	198	0.49
63.98		3860		1.5		228	
65.62		3883		2.0	70	220	
67.26	342	2723	0.49	2.5	93	235	0.49
68.90		3837		3.0	88	205	
70.54		2723		3.5	96	205	
72.18		3929		4.0	104	211	
73.82		2038		4.5	90	212	
75.46		2360		5.0	88	225	
77.10		5911		5.5	78	505	
78.74		2467		6.0	76	694	
80.38		3297		6.5	82	943	
82.02	410	3509	0.49	7.0	98	1389	0.49
83.66	684	5807	0.49	7.5	104	1471	0.49
85.30	497	3547	0.49	8.0	91	1667	0.49
86.94	377	3929	0.50	8.5	98	1538	0.50
88.58		5249		9.0	145	1575	
90.22	529	5249	0.49	9.5	185	1575	0.49
91.86		4233		10.0	213	1325	
93.50	513	3906	0.49	10.5	154	1449	0.49
95.14		4755		11.0	125	1575	
96.78		4755		11.5	159	1227	
98.43		4525		12.0	152	1600	
100.07		4621		12.5	137	1515	
101.71		5292		13.0	132	1515	
103.35		5292		13.5	120	1460	
104.99		4206		14.0	135	1274	
106.63	386	5249	0.50	14.5	185	1563	0.50
108.27		5087		15.0	200	1481	
109.91		5047		15.5	141	1515	
111.55		5047		16.0	119	1493	
113.19		4825		16.5	141	1639	
114.83	538	4557	0.49	17.0	114	1626	0.49
116.47	386	6696	0.50	17.5	139	1786	0.50
118.11	505	4654	0.49	18.0	114	1739	0.49
119.75	556	4050	0.49	18.5	122	1600	0.49
121.39	608	5126	0.49	19.0	132	1163	0.49
123.03	400	4345	0.50	19.5	-	1176	0.50
124.67	365	4525	0.50	20.0		1183	0.50

American Units									
Depth at	Vel	ocity							
Midpoint									
Between			Poisson's						
Receivers	Vs	Vp	Ratio						
(ft)	(ft/s)	(ft/s)							
126.31	556	4897	0.49						
127.95	515	4971	0.49						
129.59	475	3348	0.49						
131.23	521	4825	0.49						
132.87	521	5561	0.50						

Metric Units										
Depth at	Velo	ocity								
Midpoint Between Receivers	Vs	Vp	Poisson's Ratio							
(m)	(m/s)	(m/s)								
20.5	104	830	0.49							
21.0		1170	0.49							
21.5		830	0.49							
22.0		1198	0.49							
22.5		621	0.50							

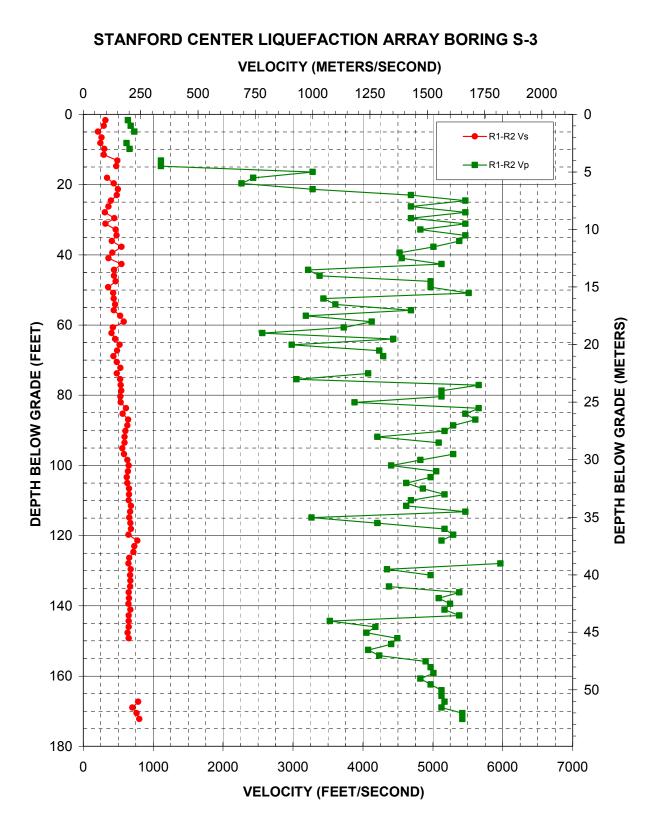


Figure 5. Boring S-3, Suspension R1-R2 P- and S_H-wave velocities

Table 4. Boring S-3, Suspension R1-R2 depths and P- and S_H-wave velocities

A	merican	Units			Metric U	nits	
Depth at Midpoint Between Receivers	Velo V _s	ocity Vp	Poisson's Ratio	Depth at Midpoint Between Receivers	Velo V _s	Vp	Poisson's Ratio
(ft)	(ft/s)	(ft/s)		(m)	(m/s)	(m/s)	
1.64	318	641	0.34	0.5	97	195	0.34
3.28	293	681	0.39	1.0	89	207	0.39
4.92	211	729	0.45	1.5	64	222	0.45
6.56	264	•		2.0	80		
8.20	245	619	0.41	2.5	75	189	0.41
9.84	301	663	0.37	3.0	92	202	0.37
11.48	293			3.5	89		
13.12	490	1112	0.38	4.0	149	339	0.38
14.76	472	1112	0.39	4.5	144	339	0.39
16.40		3281		5.0		1000	
18.04	344	2430	0.49	5.5	105	741	0.49
19.69	437	2263	0.48	6.0	133	690	0.48
21.33	497	3281	0.49	6.5	152	1000	0.49
22.97	482	4687	0.49	7.0	147	1429	0.49
24.61	398	5468	0.50	7.5	121	1667	0.50
26.25	363	4687	0.50	8.0	110	1429	0.50
27.89	310	5468	0.50	8.5	94	1667	0.50
29.53	446	4687	0.50	9.0	136	1429	0.50
31.17	317	5468	0.50	9.5	97	1667	0.50
32.81	465	4825	0.50	10.0	142	1471	0.50
34.45	475	5468	0.50	10.5	145	1667	0.50
36.09	410	5378	0.50	11.0	125	1639	0.50
37.73	547	5009	0.49	11.5	167	1527	0.49
39.37	418	4525	0.50	12.0	127	1379	0.50
41.01	361	4557	0.50	12.5	110	1389	0.50
42.65	547	5126	0.49	13.0	167	1563	0.49
44.29	440	3217	0.49	13.5	134	980	0.49
45.93	440	3382	0.49	14.0	134	1031	0.49
47.57	465	4971	0.50	14.5	142	1515	0.50
49.21	359	4971	0.50	15.0	109	1515	0.50
50.85	428	5514	0.50	15.5	131	1681	0.50
52.49	437	3435	0.49	16.0	133	1047	0.49
54.13	457	3605	0.49	16.5	139	1099	0.49
55.77	439	4687	0.50	17.0	134	1429	0.50
57.41	529	3185	0.49	17.5	161	971	0.49
59.06	581	4127	0.49	18.0	177	1258	0.49
60.70	423	3728	0.49	18.5	129	1136	0.49

Ar	nerican	Units				Metric U	nits	
Depth at	Velo	ocity			Depth at	Velo	ocity	
Midpoint					Midpoint			
Between			Poisson's		Between			Poisson's
Receivers	Vs	Vp	Ratio		Receivers	Vs	Vp	Ratio
(ft)	(ft/s)	(ft/s)			(m)	(m/s)	(m/s)	
62.34	405	2563	0.49		19.0	123	781	0.49
63.98	457	4434	0.49		19.5	139	1351	0.49
65.62	521	2983	0.48		20.0	159	909	0.48
67.26	486	4233	0.49		20.5	148	1290	0.49
68.90	433	4289	0.49		21.0	132	1307	0.49
70.54	481				21.5	147		
72.18	533				22.0	163		
73.82	481	4076	0.49		22.5	147	1242	0.49
75.46	527	3052	0.48		23.0	161	930	0.48
77.10	536	5657	0.50		23.5	163	1724	0.50
78.74	545	5126	0.49		24.0	166	1563	0.49
80.38	531	5126	0.49		24.5	162	1563	0.49
82.02	536	3883	0.49		25.0	163	1183	0.49
83.66	613	5657	0.49		25.5	187	1724	0.49
85.30	563	5468	0.49		26.0	172	1667	0.49
86.94	643	5608	0.49		26.5	196	1709	0.49
88.58	631	5292	0.49		27.0	192	1613	0.49
90.22	602	5167	0.49		27.5	183	1575	0.49
91.86	591	4206	0.49		28.0	180	1282	0.49
93.50	591	5087	0.49		28.5	180	1550	0.49
95.14	561				29.0	171		
96.78	586	5292	0.49		29.5	179	1613	0.49
98.43	631	4825	0.49		30.0	192	1471	0.49
100.07	653	4404	0.49		30.5	199	1342	0.49
101.71	640	5047	0.49		31.0	195	1538	0.49
103.35	622	4971	0.49		31.5	190	1515	0.49
104.99	631	4621	0.49		32.0	192	1408	0.49
106.63	656	4861	0.49		32.5	200	1481	0.49
108.27	656	5167	0.49		33.0	200	1575	0.49
109.91	650	4687	0.49		33.5	198	1429	0.49
111.55	684	4621	0.49		34.0	208	1408	0.49
113.19	670	5468	0.49		34.5	204	1667	0.49
114.83	659	3265	0.48		35.0	201	995	0.48
116.47	676	4206	0.49		35.5	206	1282	0.49
118.11	684	5167	0.49		36.0	208	1575	0.49
119.75	646	5292	0.49		36.5	197	1613	0.49
121.39	777	5126	0.49		37.0	237	1563	0.49
123.03	729				37.5	222		
124.67	717				38.0	219		

A	nerican	Units] [Metric U	nits	
Depth at	Velo	ocity			Depth at	Velo	ocity	
Midpoint					Midpoint			
Between		V	Poisson's		Between		v	Poisson's
Receivers	V _s	V _p	Ratio		Receivers	V _s	V _p	Ratio
(ft)	(ft/s)	(ft/s)			(m)	(m/s)	(m/s)	
126.31	659				38.5	201		
127.95	646	5965	0.49		39.0	197	1818	0.49
129.59	680	4345	0.49		39.5	207	1325	0.49
131.23	670	4971	0.49		40.0	204	1515	0.49
132.87	676				40.5	206		
134.51	673	4374	0.49		41.0	205	1333	0.49
136.15	650	5378	0.49		41.5	198	1639	0.49
137.80	656	5087	0.49		42.0	200	1550	0.49
139.44	646	5249	0.49		42.5	197	1600	0.49
141.08	676	5167	0.49		43.0	206	1575	0.49
142.72	653	5378	0.49		43.5	199	1639	0.49
144.36	653	3528	0.48		44.0	199	1075	0.48
146.00	653	4179	0.49		44.5	199	1274	0.49
147.64	634	4050	0.49		45.0	193	1235	0.49
149.28	650	4494	0.49		45.5	198	1370	0.49
150.92		4404			46.0		1342	
152.56		4076			46.5		1242	
154.20		4233			47.0		1290	
155.84		4897			47.5		1493	
157.48		4971			48.0		1515	
159.12		5009			48.5		1527	
160.76		4825			49.0		1471	
162.40		4971			49.5		1515	
164.04		5126			50.0		1563	
165.68		5126			50.5		1563	
167.32	786	5167	0.49		51.0	240	1575	0.49
168.96	704	5126	0.49		51.5	215	1563	0.49
170.60	761	5423	0.49		52.0	232	1653	0.49
172.24	804	5423	0.49		52.5	245	1653	0.49

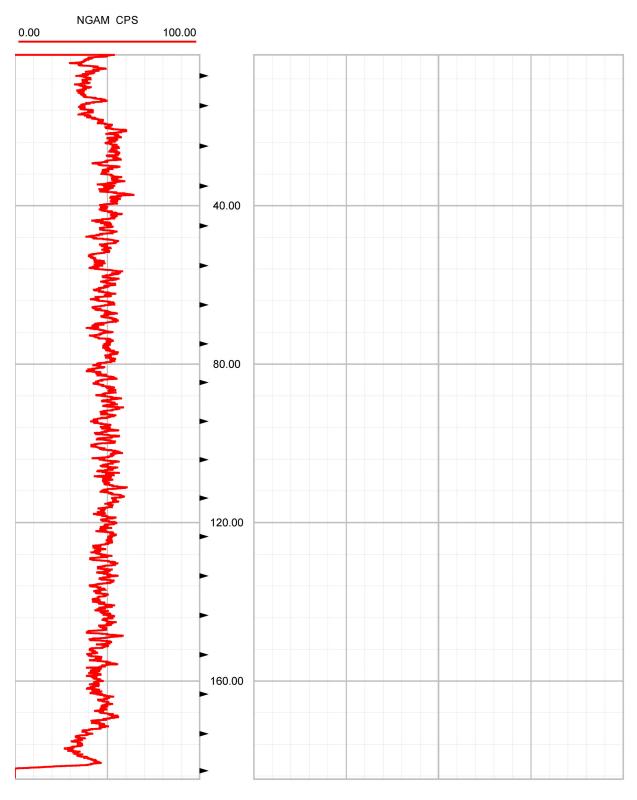
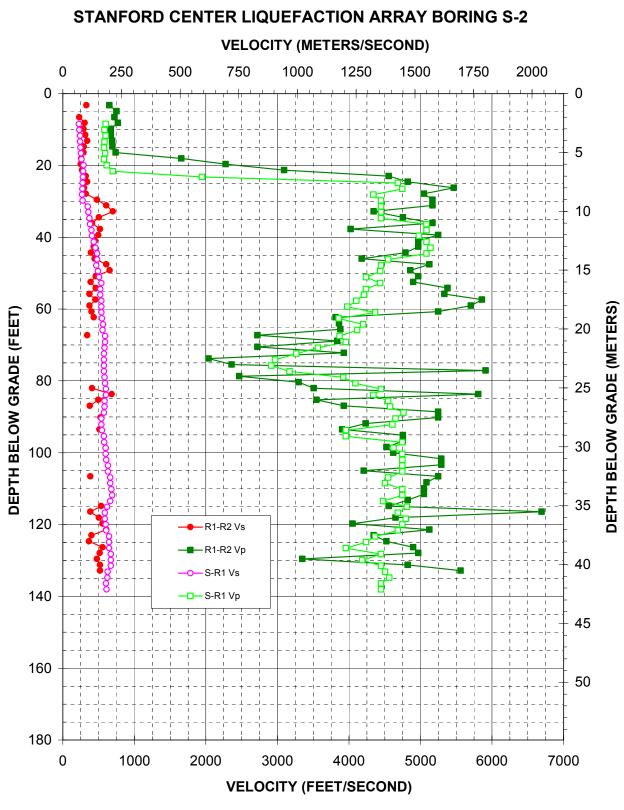



Figure 6. Boring S-3, Natural gamma log

APPENDIX A

SUSPENSION VELOCITY MEASUREMENT QUALITY ASSURANCE SUSPENSION SOURCE TO RECEIVER ANALYSIS RESULTS

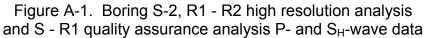


Table A-1. Boring S-2, S - R1 quality assurance analysis P- and S_H-wave data

American Units				Metric Units			
Depth at Midpoint Between Source	Velo	ocity		Depth at Midpoint Between Source	Velocity		
and Near Receiver	Vs	Vp	Poisson's Ratio	and Near Receiver	Vs	Vp	Poisson's Ratio
(ft)	(ft/s)	(ft/s)		(m)	(m/s)	(m/s)	
8.48	225	598	0.42	2.6	69	182	0.42
10.12	232	583	0.41	3.1	71	178	0.41
11.76	242	600	0.40	3.6	74	183	0.40
13.40	242	585	0.40	4.1	74	178	0.40
15.04	247	575	0.39	4.6	75	175	0.39
16.68	254	593	0.39	5.1	78	181	0.39
18.32	264	577	0.37	5.6	80	176	0.37
19.96	289	615	0.36	6.1	88	187	0.36
21.60	285	698	0.40	6.6	87	213	0.40
23.24	280	1945	0.49	7.1	85	593	0.49
24.89	278	4684	0.50	7.6	85	1428	0.50
26.53	276	4746	0.50	8.1	84	1447	0.50
28.17	272	4341	0.50	8.6	83	1323	0.50
29.81	278	4450	0.50	9.1	85	1356	0.50
31.45	349	4450	0.50	9.6	106	1356	0.50
33.09	356	4450	0.50	10.1	109	1356	0.50
34.73	375	4450	0.50	10.6	114	1356	0.50
36.37	383	5085	0.50	11.1	117	1550	0.50
38.01	400	5085	0.50	11.6	122	1550	0.50
39.65	409	4979	0.50	12.1	125	1517	0.50
41.29	434	5085	0.50	12.6	132	1550	0.50
42.93	456	5140	0.50	13.1	139	1567	0.50
44.57	481	5085	0.50	13.6	147	1550	0.50
46.21	481	4549	0.49	14.1	147	1387	0.49
47.85	468	4450	0.49	14.6	143	1356	0.49
49.49	494	4436	0.49	15.1	151	1352	0.49
51.13	509	4238	0.49	15.6	155	1292	0.49
52.77	539	4436	0.49	16.1	164	1352	0.49
54.41	523	4238	0.49	16.6	160	1292	0.49
56.05	526	4213	0.49	17.1	160	1284	0.49
57.69	539	4103	0.49	17.6	164	1251	0.49
59.33	539	3977	0.49	18.1	164	1212	0.49
60.97	539	4368	0.49	18.6	164	1331	0.49
62.61	548	3859	0.49	19.1	167	1176	0.49
64.26	565	4200	0.49	19.6	172	1280	0.49
65.90	556	4115	0.49	20.1	170	1254	0.49
67.54	593	3869	0.49	20.6	181	1179	0.49

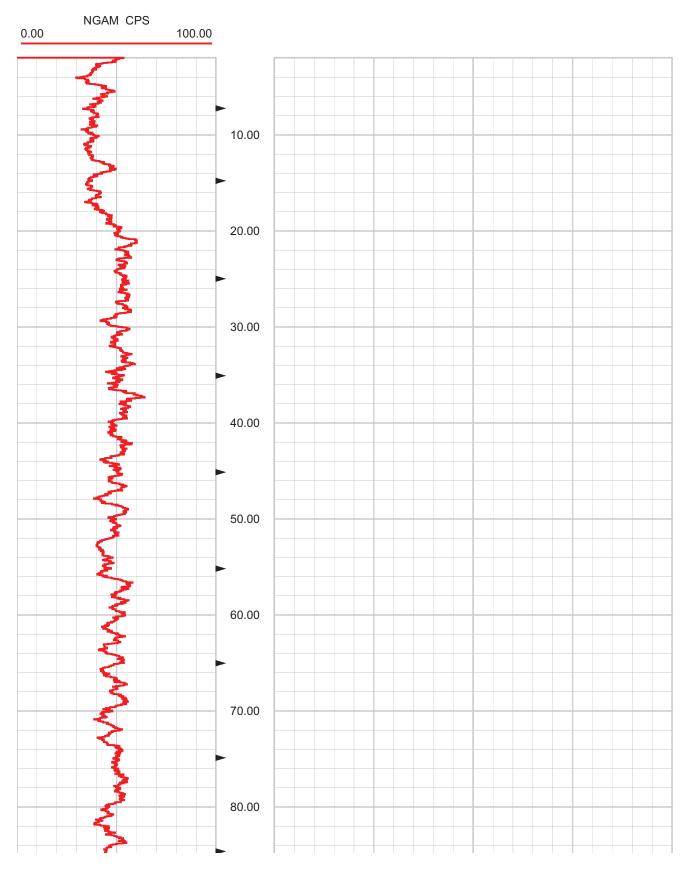
Am	erican	Units		Metric Units			
Depth at Midpoint	Velocity			Depth at Midpoint	Velocity		
Between Source				Between Source			
and Near			Poisson's	and Near			Poisson's
Receiver	Vs	Vp	Ratio	Receiver	Vs	Vp	Ratio
(ft)	(ft/s)	(ft/s)		(m)	(m/s)	(m/s)	
69.18	593	3955	0.49	21.1	181	1206	0.49
70.82	584	3569	0.49	21.6	178	1088	0.49
72.46	574	3266	0.48	22.1	175	995	0.48
74.10	574	2966	0.48	22.6	175	904	0.48
75.74	574	2918	0.48	23.1	175	889	0.48
77.38	574	3171	0.48	23.6	175	967	0.48
79.02	584	3923	0.49	24.1	178	1196	0.49
80.66	593	4092	0.49	24.6	181	1247	0.49
82.30	603	4450	0.49	25.1	184	1356	0.49
83.94	603	4341	0.49	25.6	184	1323	0.49
85.58	585	4549	0.49	26.1	178	1387	0.49
87.22	585	4578	0.49	26.6	178	1395	0.49
88.86	574	4762	0.49	27.1	175	1452	0.49
90.50	539	4653	0.49	27.6	164	1418	0.49
92.14	539	4608	0.49	28.1	164	1405	0.49
93.78	548	3955	0.49	28.6	167	1206	0.49
95.42	574	3955	0.49	29.1	175	1206	0.49
97.06	579	4746	0.49	29.6	176	1447	0.49
98.70	598	4623	0.49	30.1	182	1409	0.49
100.34	598	4746	0.49	30.6	182	1447	0.49
101.98	608	4746	0.49	31.1	185	1447	0.49
103.63	630	4746	0.49	31.6	192	1447	0.49
105.27	630	4746	0.49	32.1	192	1447	0.49
106.91	665	4549	0.49	32.6	203	1387	0.49
108.55	665	4506	0.49	33.1	203	1373	0.49
110.19	678	4746	0.49	33.6	207	1447	0.49
111.83	691	4746	0.49	34.1	211	1447	0.49
113.47	665	4478	0.49	34.6	203	1365	0.49
115.11	619	4810	0.49	35.1	189	1466	0.49
116.75	588	4684	0.49	35.6	179	1428	0.49
118.39	588	4794	0.49	36.1	179	1461	0.49
120.03	598	4746	0.49	36.6	182	1447	0.49
121.67	608	4684	0.49	37.1	185	1428	0.49
123.31	647	4368	0.49	37.6	197	1331	0.49
124.95	647	4238	0.49	38.1	197	1292	0.49
126.59	647	3955	0.49	38.6	197	1206	0.49
128.23	672	4450	0.49	39.1	205	1356	0.49
129.87	672	4188	0.49	39.6	205	1276	0.49
131.51	672	4450	0.49	40.1	205	1356	0.49

American Units								
Depth at Midpoint	Velo	ocity						
Between Source and Near	V	V	Poisson's Ratio					
Receiver	Vs	Vp	Ratio					
(ft)	(ft/s)	(ft/s)						
133.15	628	4506	0.49					
134.79	625	4564	0.49					
136.43	603	4450	0.49					
138.07	614	4450	0.49					

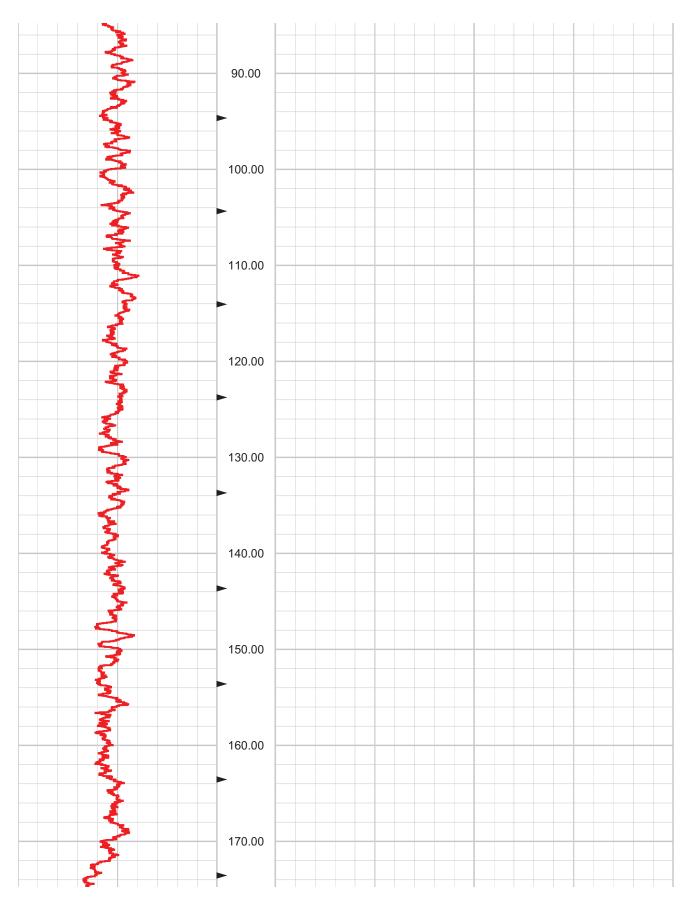
Metric Units								
Depth at Midpoint	Velo	city						
Between Source and Near Receiver	Vs	Vp	Poisson's Ratio					
(m)	(m/s)	(m/s)						
40.6	191	1373	0.49					
41.1	190	1391	0.49					
41.6	184	1356	0.49					
42.1	187	1356	0.49					

Figure A-2. Boring S-3, R1 - R2 high resolution analysis and S - R1 quality assurance analysis P- and S_H -wave data

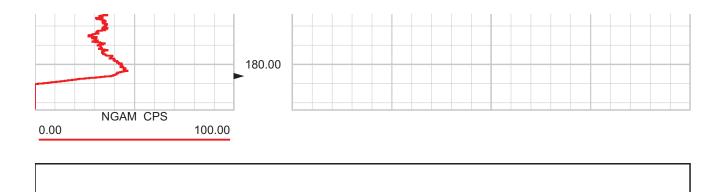
Table A-2. Boring S-3, S - R1 quality assurance analysis P- and S_H-wave data


American Units				Metric Units			
Depth at Midpoint	Vel	ocity		Depth at Midpoint	Velocity		
Between Source				Between Source			
and Near			Poisson's	and Near			Poisson's
Receiver	V _s	V _p	Ratio	Receiver	V _s	V _p	Ratio
(ft)	(ft/s)	(ft/s)		(m)	(m/s)	(m/s)	
6.84	296	2034	0.49	2.1	90	620	0.49
8.48	300	2034	0.49	2.6	92	620	0.49
10.12	317	2197	0.49	3.1	97	670	0.49
11.76	327	2334	0.49	3.6	100	711	0.49
13.40	330	2373	0.49	4.1	100	723	0.49
15.04	327	2589	0.49	4.6	100	789	0.49
16.68	356	2738	0.49	5.1	109	835	0.49
18.32	363	2848	0.49	5.6	111	868	0.49
19.96	365	3095	0.49	6.1	111	943	0.49
21.60	365	3560	0.49	6.6	111	1085	0.49
23.24	360	4450	0.50	7.1	110	1356	0.50
24.89	371	5085	0.50	7.6	113	1550	0.50
26.53	389	5476	0.50	8.1	119	1669	0.50
28.17	424	5476	0.50	8.6	129	1669	0.50
29.81	442	5476	0.50	9.1	135	1669	0.50
31.45	468	5476	0.50	9.6	143	1669	0.50
33.09	484	5476	0.50	10.1	148	1669	0.50
34.73	494	5476	0.50	10.6	151	1669	0.50
36.37	509	5476	0.50	11.1	155	1669	0.50
38.01	492	5435	0.50	11.6	150	1656	0.50
39.65	427	5353	0.50	12.1	130	1632	0.50
41.29	465	5014	0.50	12.6	142	1528	0.50
42.93	448	4910	0.50	13.1	136	1497	0.50
44.57	451	5049	0.50	13.6	138	1539	0.50
46.21	416	5394	0.50	14.1	127	1644	0.50
47.85	379	5085	0.50	14.6	115	1550	0.50
49.49	387	5435	0.50	15.1	118	1656	0.50
51.13	456	5519	0.50	15.6	139	1682	0.50
52.77	481	5313	0.50	16.1	147	1619	0.50
54.41	486	5049	0.50	16.6	148	1539	0.50
56.05	468	5313	0.50	17.1	143	1619	0.50
57.69	459	5696	0.50	17.6	140	1736	0.50
59.33	486	5718	0.50	18.1	148	1743	0.50
60.97	529	5476	0.50	18.6	161	1669	0.50
62.61	535	5197	0.49	19.1	163	1584	0.49
64.26	512	5274	0.50	19.6	156	1607	0.50
65.90	505	5104	0.50	20.1	154	1556	0.50

67.54	505	4794	0.49	20.6	154	1461	0.49
69.18	522	5812	0.50	21.1	159	1771	0.50
70.82	525	6085	0.50	21.6	160	1855	0.50
72.46	565	5718	0.50	22.1	172	1743	0.50
74.10	584	5394	0.49	22.6	178	1644	0.49
75.74	586	4910	0.49	23.1	179	1497	0.49
77.38	587	4608	0.49	23.6	179	1405	0.49
79.02	586	5394	0.49	24.1	179	1644	0.49
80.66	596	5333	0.49	24.6	182	1625	0.49
82.30	586	5373	0.49	25.1	179	1638	0.49
83.94	596	5122	0.49	25.6	182	1561	0.49
85.58	616	4961	0.49	26.1	188	1512	0.49
87.22	622	5104	0.49	26.6	190	1556	0.49
88.86	647	4827	0.49	27.1	197	1471	0.49
90.50	630	4910	0.49	27.6	192	1497	0.49
92.14	636	5031	0.49	28.1	194	1534	0.49
93.78	625	5293	0.49	28.6	190	1613	0.49
95.42	622	5178	0.49	29.1	190	1578	0.49
97.06	641	5333	0.49	29.6	195	1625	0.49
98.70	647	5673	0.49	30.1	197	1729	0.49
100.34	665	5765	0.49	30.6	203	1757	0.49
101.98	678	5788	0.49	31.1	207	1764	0.49
103.63	665	5933	0.49	31.6	203	1808	0.49
105.27	675	5414	0.49	32.1	206	1650	0.49
106.91	685	5519	0.49	32.6	209	1682	0.49
108.55	685	5373	0.49	33.1	209	1638	0.49
110.19	712	5476	0.49	33.6	217	1669	0.49
111.83	704	5673	0.49	34.1	215	1729	0.49
113.47	711	5606	0.49	34.6	217	1709	0.49
115.11	719	5178	0.49	35.1	219	1578	0.49
116.75	697	5313	0.49	35.6	212	1619	0.49
118.39	681	5235	0.49	36.1	208	1596	0.49
120.03	695	4944	0.49	36.6	212	1507	0.49
121.67	705	4979	0.49	37.1	215	1517	0.49
123.31	712	4996	0.49	37.6	217	1523	0.49
124.95	719	5353	0.49	38.1	219	1632	0.49
126.59	705	5085	0.49	38.6	215	1550	0.49
128.23	698	4593	0.49	39.1	213	1400	0.49
129.87	688	4684	0.49	39.6	210	1428	0.49
131.51	688	4715	0.49	40.1	210	1437	0.49
133.15	708	4653	0.49	40.6	216	1418	0.49
134.79	691	4715	0.49	41.1	211	1437	0.49
136.43	683	4794	0.49	41.6	208	1461	0.49
138.07	688	4684	0.49	42.1	210	1428	0.49
139.71	705	4860	0.49	42.6	215	1481	0.49
141.35	701	4731	0.49	43.1	214	1442	0.49
143.00	695	4927	0.49	43.6	212	1502	0.49
144.64	705	4827	0.49	44.1	215	1471	0.49


146.28	708	4996	0.49	44.6	216	1523	0.49
147.92	708	5031	0.49	45.1	216	1534	0.49
149.56	701	5085	0.49	45.6	214	1550	0.49
151.20	723	4715	0.49	46.1	220	1437	0.49
152.84	708	4653	0.49	46.6	216	1418	0.49
154.48	716	4492	0.49	47.1	218	1369	0.49
156.12	728	4668	0.49	47.6	222	1423	0.49
157.76	709	4810	0.49	48.1	216	1466	0.49
159.40	709	4762	0.49	48.6	216	1452	0.49
161.04	718	4827	0.49	49.1	219	1471	0.49
162.68	718	4876	0.49	49.6	219	1486	0.49
164.32	718	4762	0.49	50.1	219	1452	0.49
165.96	718	4944	0.49	50.6	219	1507	0.49
167.60	718	4893	0.49	51.1	219	1491	0.49
169.24	749	4996	0.49	51.6	228	1523	0.49
170.88	791	5085	0.49	52.1	241	1550	0.49
172.52	914	5455	0.49	52.6	279	1663	0.49
174.16	1020	6085	0.49	53.1	311	1855	0.49
175.80	1215	6443	0.48	53.6	370	1964	0.48
177.44	1236	6273	0.48	54.1	377	1912	0.48

APPENDIX B


NATURAL GAMMA LOGS

Seattle Stanford School Center Boring S-3 natural gamma log rev 1 sheet 1 of 3

Seattle Stanford School Center Boring S-3 natural gamma log rev 1 sheet 2 of 3

Seattle Stanford School Center Boring S-3 natural gamma log rev 1 sheet 3 of 3

APPENDIX C

BORING GEOPHYSICAL LOGGING SYSTEMS NIST TRACEABLE CALIBRATION RECORDS

Certificate of Calibration

Date: 8/8/2011

Lab # 935.11

Customer: GEOVISION 1124 OLYMPIC DRIVE CORONA, CA, 92881

MPC Control #: AM6767 Asset ID: 160023 Gage Type: LOGGER Manufacturer: OYO Model Number: 3403 Size: N/A Temp./RH: 70 °F / 35 % Work Order: N/A Serial Number: 160023 Department: N/A Performed By: JIM WILLIAMS Received Condition: IN TOLERANCE Returned Condition: IN TOLERANCE July 29, 2011 Cal Date: Cal. Interval: 12 MONTHS Cal. Due Date: July 29, 2012

Purchase Order:

Found conditions meet or exceed manufacturer specifications.

*Calibration Notes: This certificate superceeds 1452653.

See attached data sheet for calculations. Calibrated IAW customer supplied calibration data form Rev 2.0

Test Points

Calibrating Technician:

Description	Standard	Tolerance -	Tolerance +	As Found	As Left	UOM	Result
Test Frequency	50.000	49.500	50.500	50.000	50.000	Hz	Pass
Test Frequency	100.000	99.000	101.000	100.000	100.000	Hz	Pass
Test Frequency	200.000	198.000	202.000	200.000	200.000	Hz	Pass
Test Frequency	500.000	495.000	505.000	500.000	500.000	Hz	Pass
Test Frequency	1000.000	990.000	1010.000	1000.000	1000.000	Hz	Pass
Test Frequency	2000.000	1980.000	2020.000	2000.000	2000.000	Hz	Pass

Standard	s Used To Calibrate Equipment					
I.D.	Description	Model	Serial	Manufacturer	Cal. Due Date	Traceability #
AM4000	WAVEFORM GENERATOR	33250A	MY40000703	AGILENT	8/17/2011	1063979
CC8501	GPS TIME & FREQUENCY RECEIVER	58503A	3710A08295	HEWLETT PACKARD	1/31/2013	1269299

Jwilli

JIM WILLIAMS

QC Approval:

Tammy Webster

retable

Unless Otherwise Noted, Uncertainty Estimated at >= 4 to 1. Uncertainties have been estimated at a 95 percent confidence level (k=2). Services rendered comply with ISO 17025/2005, ISO 9001/2008, ANSI/NCSL Z540-3, MPC Quality Manual, MPC CSD and with customer purchase order instructions.

Calibration cycles and resulting due dates were submitted/approved by the customer. Any number of factors may cause an instrument to drift out of tolerance before the next scheduled calibration. Recalibration cycles should be based on frequency of use, environmental conditions and customer's established systematic accuracy. The information on this report, pertains only to the instrument identified.

All standards are traceable to the National Institute of Standards and Technology (NIST). Services rendered include proper manufacturer's service instructions and are warranted for no less than thirty (30) days This report may not be reproduced in part or in whole without the prior written approval of the issuing MPC lab.

Page 1 of 2

(CERT, Rev 1)

Certificate #: 1462589

12686 HOOVER STREET

(714) 901-5659

GARDEN GROVE, CA, 92841

MICRO PRECISION CALIBRATION, INC.

LIAMS RANCE RANCE

BCHMPC2001001

MICRO PRECISION CALIBRATION, INC. 12686 HOOVER STREET GARDEN GROVE, CA, 92841 (714) 901-5659

Certificate of Calibration

Date: 8/8/2011 T1100 ACCREDITED Lab # 935.11 COUNTER

53131A

3546A09912

HEWLETT PACKARD

Certificate #: 1462589

1233372

1/27/2012

Procedures Used In This Event:

Procedure Name CALIBRATION GENERAL Description GENERAL CALIBRATION INSTRUCTION

Calibrating Technician:

Jwill

JIM WILLIAMS

Remmy Leslister

Tammy Webster

Unless Otherwise Noted, Uncertainty Estimated at >= 4 to 1. Uncertainties have been estimated at a 95 percent confidence level (k=2). Services rendered comply with ISO 17025:2005, ISO 9001:2008, ANSI/NCSL Z540-3, MPC Quality Manual, MPC CSD and with customer purchase order instructions.

Calibration cycles and resulting due dates were submitted/approved by the customer. Any number of factors may cause an instrument to drift out of tolerance before the next scheduled calibration. Recalibration cycles should be based on frequency of use, environmental conditions and customer's established systematic accuracy. The information on this report, pertains only to the instrument identified.

All standards are traceable to the National Institute of Standards and Technology (NIST). Services rendered include proper manufacturer's service instructions and are warranted for no less than thirty (30) days This report may not be reproduced in part or in whole without the prior written approval of the issuing MPC lab.

Page 2 of 2

(CERT, Rev 1)

QC Approval:

AM 6767

SUSPENSION PS SEISMIC LOGGER/RECORDER CALIBRATION DATA FORM

INSTRUMENT DATA

System mfg.:	OYO		Model no.:	3403
Serial no.:	160023		Calibration date:	7/29/2011
By:	Jim Williams		Due date:	7/29/2012
Counter mfg.:	Hewlett Packard		Model no.:	53131A
Serial no.:	3546A09912		Calibration date:	1/27/2011
By:	Micro Precision Cali	ibration	Due date:	1/27/2012
Signal generator mfg.:	Hewlett Packard		Model no.:	33250A
Serial no.:	MY40000703		Calibration date:	8/17/2010
By:	Micro Precision Cali	ibration	Due date:	8/17/2011
SYSTEM SETTINGS:				
Gain:	2			
Filter	A	nalog:10ł	<hz; digital:="" off<="" td=""><td></td></hz;>	
Range:	S	See sampl	e period in table below	
Delay:	0	ms		
Stack (1 std)	1	1		
System date = correct da	te and time 7	7/29/2011	14:30	

PROCEDURE:

Set sine wave frequency to target frequency with amplitude of approximately 0.25 volt peak Note actual frequency on data form.

Set sample period and record data file to disk. Note file name on data form.

Pick duration of 9 cycles using PSLOG EXE program, note duration on data form, and save as .sps file. Calculate average frequency for each channel pair and note on data form.

Average frequency must be within +/- 1% of actual frequency at all data points.

or ((AVG-AC	(1)/ACT*1	00)%	As found		0.10%		As left	0.10%
Actual	Sample	File	Time for	Average	Time for	Average	Time for	Average
Frequency	Period	Name	9 cycles			Frequency	9 cycles	Frequency
(Hz)	(microS)		Hn (msec)	Hn (Hz)	Hr (msec)	Hr (Hz)	V (msec)	V (Hz)
50.000	200	501	180.0	50.00	180.0	50.00	180.0	50.00
100.00	100	502	90.00	100.0	90.00	100.0	90.00	100.0
200.00	50	503	45.00	200.0	44.95	200.2	44.95	200.2
500.00	20	504	18.00	500.0	18.00	500.0	18.00	500.0
1000.0	10	505	9.000	1000	9.000	1000	9.000	1000
2000.0	5	506	4.500	2000	4.500	2000	4.500	2000
	Actual Frequency (Hz) 50.000 100.00 200.00 500.00 1000.0	Actual Sample Frequency (Hz) Period (microS) 50.000 200 100.00 100 200.00 50 500.00 20 100.00 100 200.00 50 500.00 20 1000.0 10	Frequency (Hz) Period (microS) Name 50.000 200 501 100.00 100 502 200.00 50 503 500.00 20 504 1000.0 10 505	Actual Frequency (Hz) Sample Period (microS) File Name 9 cycles Hn (msec) 50.000 200 501 180.0 100.00 100 502 90.00 200.00 50 503 45.00 500.00 20 504 18.00 1000.0 10 505 9.000	Actual Frequency (Hz) Sample Period (microS) File Name Hn (msec) Time for 9 cycles Hn (msec) Average Frequency Hn (Hz) 50.000 200 501 180.0 50.00 100.00 100 502 90.00 100.0 2000.00 50 503 45.00 200.0 500.00 20 504 18.00 500.0 1000.0 10 505 9.000 1000	Actual Frequency (Hz) Sample Period (microS) File Name Time for 9 cycles Hn (msec) Average Frequency Hn (Hz) Time for 9 cycles Hr (msec) 50.000 200 501 180.0 50.00 180.0 100.00 100 502 90.00 100.0 90.00 200.00 50 503 45.00 200.0 44.95 500.00 20 504 18.00 500.0 18.00 1000.0 10 505 9.000 1000 9.000	Actual Frequency (Hz) Sample (microS) File Name (Hn (msec) Time for 9 cycles (Hn (msec) Average Frequency (Hn (Hz) Time for 9 cycles (Hn (Hz) Average 9 cycles (Hn (Hz) Time for 9 cycles (Hn (Hz) Average Frequency (Hr (Hz) 50.000 200 501 180.0 50.00 180.0 50.00 100.00 100 502 90.00 100.0 90.00 100.0 200.00 50 503 45.00 200.0 44.95 200.2 500.00 20 504 18.00 500.0 18.00 500.0 1000.0 10 505 9.000 1000 9.000 1000	Actual Sample File Time for Average Time for Average Time for Frequency 9 cycles Frequency 9 cycles Frequency 9 cycles Frequency 9 cycles Hr (Hz) V (msec) 180.0 100.0 100.0 100.0 90.00 180.0 50.00 180.0 50.00 180.0 90.00 100.0 90.00 100.0 90.00 100.0 90.00 100.0 90.00 100.0 90.00 100.0 90.00 100.0 90.00 100.0 90.00 100.0 90.00 100.0 90.00 100.0 90.00 100.0 90.00 100.0 90.00 18.00 100.0 18.00 100.0 90.00 18.00 100.0 18.00 100.0 90.00 100.0 90.00 1000.0 10 505 9.000 1000 9.000 1000 9.000 1000

Calibrated by:	Jim Williams	7/29/2011	AW	ill-
	Name	Date	0	Signature
Witnessed by:	Robert Steller	7/29/2011	C4	. Si
	Name	Date		Signature
Suspension	PS Seismic Recorder/Logger Calibration	n Data Form	Rev 2.0	July 21, 2008

APPENDIX C Geotechnical Laboratory Testing

CONTENTS

- Table C-1: Summary of Geotechnical Laboratory Tests (5 pages)
- Figures C-1 through C-9: Grain Size Distribution
- Figures C-10 through C-16: Plasticity Charts

TABLE C-1
SUMMARY OF GEOTECHNICAL LABORATORY TESTS

								Gra	in Size	Analy	ses ^d		Plasticity ^e			
Boring No.	Top Depth (feet)	Sample No.	Sample Type ^a	Blow Count (blows/foot)	USCS ^b	Geologic Unit ^c	Water Content (%)	Gravel (%)	Sand (%)	Fines (%)	<2 microns (%)	Liquid Limit	Plastic Limit	Nonplastic	ASTM Standard	Soil Description
P-1	18	1	SPT	0	CL	HF	36.2					36	22		D4318	Gray, silty CLAY
P-1	19.5	1	SPT	0	SP	HA	21.8	0.0	98.9	1.1					D422	Black, fine to medium SAND, trace of silt
P-2	70.5	1	SPT	12	SM	HA	19.6	0.0	67.1	32.9					D422	Dark gray, silty, fine SAND
P-2	71	1	SPT	12	ML	HA	31.4					26	28	NP	D4318	Dark gray, fine sandy SILT
P-2	75.5	2	SPT	12	ML	HA	30.8	0.0	10.8	89.2	5.8				D422	Dark gray, slightly fine sandy SILT, trace of clay; trace of shell fragments
P-2	76.5	2	SPT	12	SM	HA	20.4			28.1					D1140	Dark gray, silty, fine SAND
P-3	92	1	SPT	25	SM	НА	14.1	0.0	87.7	12.3					D422	Black, silty, fine to medium SAND
P-3	97.2	2	SPT	27	SP-SM	HA	17.7			8.0					D1140	Black, slightly silty, fine to medium SAND
P-4	138	1	SPT	23	ML	HE	13.0			71.4					D1140	Dark brown-gray, fine sandy SILT, trace of clay
P-4	138.4	1	SPT	23	SM	HE	14.9	0.0	76.4	23.6					D422	Black, silty, fine SAND
																Dark brown-gray, slightly clayey SILT, trace of fine sand and fine gravel; trace of shell
P-4	140.5	2	SPT	16	ML	HE	24.9					28	23		D4318	fragments
P-4	140.9	2	SPT	16	SM	HE	12.4			25.5					D1140	Dark brown-gray, silty, fine SAND
P-4	143	3	SPT	5	ML	HE	27.0	0.0	8.8	91.2	11.5				D422	Dark brown-gray, slightly fine sandy SILT, trace of clay; trace of shell fragments
1-4	143	3	511	5	IVIL	TIE	27.0	0.0	0.0	91.2	11.5				D422	Dark brown-gray SILT, trace of fine sand and
P-4	143.5	3	SPT	5	ML	HE	28.4					30	29		D4318	clay
D.C.	-	1	ODT		м	IIE	21.7	0.0	10.5	50.5					D.422	
P-5	5	1	SPT	4	ML	HF	21.7	0.0	49.5	50.5					D422	Dark brown-gray, fine sandy SILT Dark gray, silty CLAY, trace of fine to medium
P-5	10.4	2	SPT	1	СН	HF	49.2	0.0	4.7	95.3	23.2	62	30		D422/D4318	sand
P-5	20.3	4	SPT	6	SP-SM	HF	30.0	7.9	83.5	8.6					D422	Black, slightly gravelly, slightly silty SAND
P-5	25	5	SPT	19	SP-SM	HA	21.7			6.3					D1140	Dark gray-brown, slightly silty, fine to medium SAND; trace of organics
P-5	30	6	SPT	30	SP-SM	НА	16.5	0.1	93.4	6.5					D422	Black, slightly silty, fine to medium SAND
P-5	35	7	SPT	36	SP-SM	HA	21.0			6.1					D1140	Dark gray-brown, slightly silty, fine to medium SAND
P-5	40.3	8	SPT	23	SP-SM	НА	19.6	0.0	92.5	7.5					D422	Dark gray-brown, slightly silty, fine to medium SAND
P-5	45	9	SPT	29	SP-SM	НА	21.0			6.7					D1140	Dark gray-brown, slightly silty, fine to medium SAND

TABLE C-1
SUMMARY OF GEOTECHNICAL LABORATORY TESTS

								Gra	in Size	Analys	ses ^d	Plasticity ^e				
Boring No.	Top Depth (feet)	Sample No.	Sample Type ^a	Blow Count (blows/foot)	USCS ^b	Geologic Unit ^e	Water Content (%)	Gravel (%)		Fines (%)	<2 microns (%)	Liquid Limit	Plastic Limit	Nonplastic	ASTM Standard	Soil Description
P-5	50	10	SPT	22	SP-SM	HA	24.0			10.7					D1140	Dark gray-brown, slightly silty, fine to medium SAND; trace of organics
P-5	55	11	SPT	32	SP-SM	HA	24.4	0.0	92.7	7.3					D422	Black, slightly silty, fine to medium SAND; trace of organics
P-5	60	12	SPT	21	SP-SM	HA	21.9			6.3					D1140	Black, slightly silty, fine to medium SAND
P-5	65	13	SPT	28	ML	HA				65.8					D1140	Dark brown-gray, fine sandy SILT
P-5	65.3	13	SPT	28	SP-SM	HA	22.0	0.0	94.7	5.3					D422	Dark gray-brown, slightly silty, fine SAND; trace of organics
P-5	70.4	14	SPT	22	SP-SM	HA	21.3			8.6					D1140	Dark gray-brown, slightly silty, fine SAND; trace of organics
P-5	75	15	SPT	15	SM	HA	30.1			16.2					D1140	Dark gray-brown, silty, fine SAND; trace of organics
P-5	80	16	SPT	21	ML	HE	25.6			60.1					D1140	Dark gray-brown, fine sandy SILT
P-5	80.5	16	SPT	21	SM	HE				24.1					D1140	Dark gray-brown, silty, fine SAND; scattered fine sandy silt layers, trace of organics
P-5	85	17	SPT	7	ML	HE	27.1					31	29		D4318	Dark gray-brown, slightly fine sandy SILT, trace of clay
P-5	90.6	18	SPT	8	SM	HA	23.6			25.9					D1140	Black, silty, fine SAND; trace of organics
P-5	95	19	SPT	10	SM	HA	24.5	0.0	73.2	26.8					D422	Black, silty, fine SAND; trace of organics
P-5	100	20	SPT	14	ML	HE	29.5					26	28	NP	D4318	Dark gray-brown, slightly fine sandy SILT, trace of clay
P-5	105	21	SPT	19	SM	HA	21.5	0.0	82.1	17.9					D422	Dark gray-brown, silty, fine SAND; trace of organics
P-5	110	22	SPT	13	SM	HA	24.7			25.9					D1140	Dark gray-brown, silty, fine SAND
P-5	115	23	SPT	20	SM	HA	27.4			12.3					D1140	Dark gray-brown, silty, fine SAND; trace of organics
P-5	120	24	SPT	27	SP	HA	22.4			4.9					D1140	Black, fine SAND, trace of silt
P-5	125	25	SPT	8	SM	НА	27.0	0.0	58.8	41.2	3.7				D422	Black, silty, fine SAND
P-5	135	27	SPT	20	SM	HE	23.5			37.9					D1140	Dark gray-brown, silty, fine SAND; trace of silt lavers
P-5	140	28	SPT	4	ML	HE	27.1			66.7					D1140	Dark gray-brown, fine sandy SILT
P-5	145.7	29	SPT	4	ML	HE	24.0	0.0	25.4	74.6	6.1	1			D422	Dark gray-brown, fine sandy SILT
P-5	145.7	30	SPT	0	ML	HE	38.4	0.0	1.6	98.4	16.4				D422	Dark gray-brown, rine sandy SILT Dark gray-brown, clayey SILT, trace of fine sand; trace of organics

TABLE C-1
SUMMARY OF GEOTECHNICAL LABORATORY TESTS

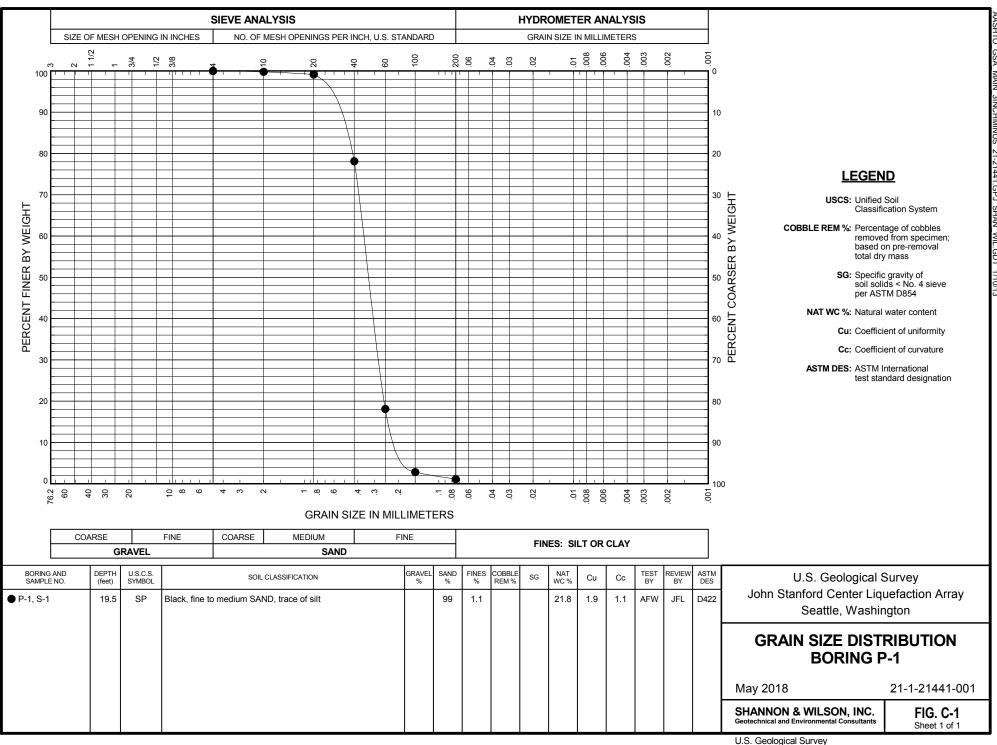
								Gra	in Size	Analys	nalyses ^d Plasticity ^e					
Boring	Top Depth	Sample	Sample	Blow Count		Geologic	Water Content	Gravel	Sand	Fines	<2 microns	Liquid	Plastic		ASTM	
No.	(feet)	No.	Type ^a	(blows/foot)	USCS ^b	Unit ^c	(%)	(%)	(%)	(%)	(%)	Limit	Limit	Nonplastic	Standard	Soil Description
P-5	155.7	31	SPT	0	ML	HE	33.8					43	28		D4318	Dark gray-brown, clayey SILT
P-6	169.5	1	SPT	22	SM	HE	16.1	0.0	77.8	22.2	4.3				D422	Black, silty, fine to medium SAND; trace of organics and shell fragments
P-6	172	2	SPT	0	ML	HE	26.2					28	28	NP	D4318	Black SILT, trace of fine sand and clay
P-6	173	2	SPT	0	ML	HE	26.3	0.0	4.7	95.3	11.9				D422	Dark gray, slightly clayey SILT, trace of fine sand Dark gray, slightly clayey SILT, trace of fine
P-6	174.5	3	SPT	0	ML	HE	32.7					34	30		D4318	sand; trace of shell fragments
P-6	179.5	4	SPT	50/6"	SP	QPGO	6.5	32.6	62.5	4.8					D422	Dark green-gray, gravelly SAND, trace of silt
S-1	19.4	1	SPT	14	SP-SM	HA	16.9	0.0	93.7	6.3					D422	Black, slightly silty, fine to medium SAND Black, silty, fine SAND; trace of shell
S-2	140	1	SPT	10	SM	HE	20.5			27.6					D1140	fragments Dark brown-gray, fine sandy SILT, trace of
S-2	141	1	SPT	10	ML	HE	14.2			85.5					D1140	clay; trace of shell fragments
S-2	142.5	2	SPT	37	ML	HE	28.5					30	30	NP	D4318	Dark brown-gray, fine sandy SILT Gray, slightly fine sandy SILT, trace of clay;
S-2	146	3	SPT	4	ML	HE	20.6	0.0	8.5	91.5	12.4				D422	trace of shell fragments Dark gray-brown, slightly fine sandy, clayey
S-2	150	4	SPT	0	ML	HE	35.5					46	29		D4318	SILT
S-3	5	1	SPT	0	ML	HF	23.3			52.4					D1140	Dark brown-gray, fine sandy SILT, trace of clay; trace of organics and shell fragments Gray, silty CLAY, trace of sand; trace of shell
S-3	15	3	SPT	0	СН	HF	47.9	0.0	0.9	99.1	47.8	62	26		D422/D4318	Gray, slity CLAY, trace of sand; trace of shell fragments Black, fine to medium SAND, trace of silt;
S-3	20.6	4	SPT	12	SP	HA	20.1			4.5					D1140	trace of organics Black, fine to medium SAND, trace of silt;
S-3	25	5	SPT	19	SP	HA	24.8	0.2	95.8	4.0					D422	trace of organics Black, slightly silty, fine to medium SAND;
S-3	30	6	SPT	27	SP-SM	HA	15.8			5.1					D1140	trace of organics Black, slightly silty, fine to medium SAND;
S-3	35	7	SPT	29	SP-SM	HA	22.0			5.9					D1140	trace of organics
S-3	40	8	SPT	27	SP-SM	HA	16.9	0.0	91.9	8.1					D422	Black, slightly silty, fine to medium SAND
<u>S-3</u>	45	9	SPT	18	SM	HA	27.5			44.2					D1140	Black, silty, fine SAND; trace of organics Black, slightly silty, fine to medium SAND;
<u>S-3</u>	45.6	9	SPT	18	SP-SM	HA	24.8			6.8					D1140	trace of organics Black, slightly silty, fine to medium SAND;
S-3	50	10	SPT	27	SP-SM	HA	18.9			7.1					D1140	trace of organics Black, silty, fine SAND; trace of organics
S-3	55	11	SPT	10	SM	HA	32.5			48.1					D1140	(siltier portion of sample)

	TABLE C-1
SUMMARY OF	GEOTECHNICAL LABORATORY TESTS

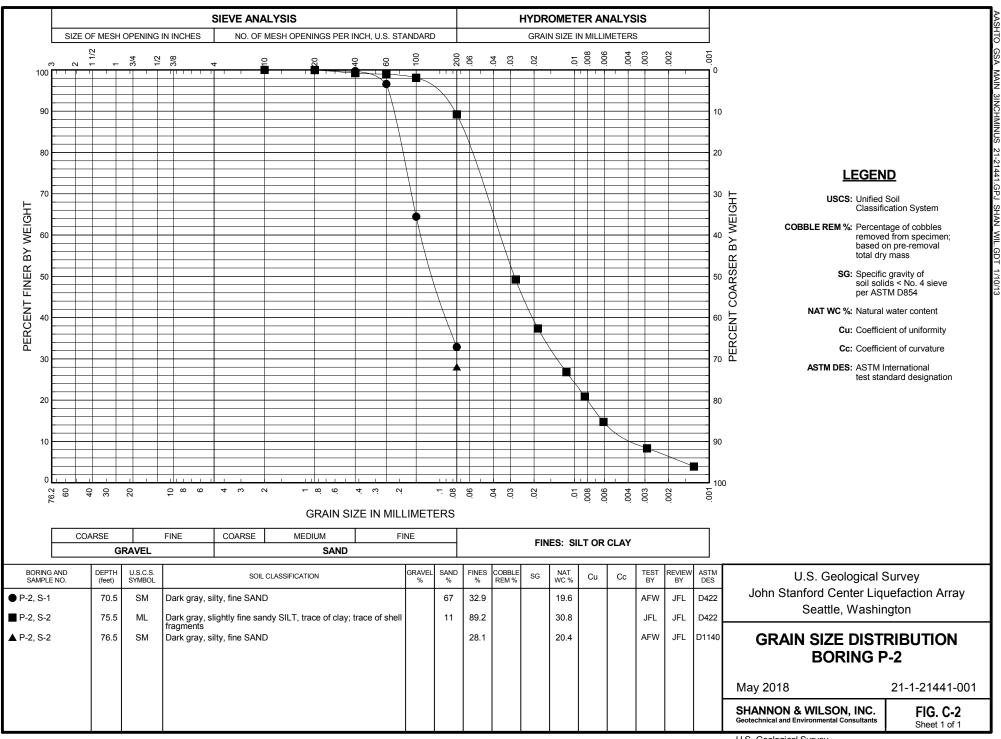
								Grain Size Analyses ^d		Plastic	ity ^e					
D ·	Тор	G 1	Sample	Blow		Geologic	Water		C 1	Б.	.<2	· · · ·				
Boring No.	(feet)	Sample No.	Type ^a	Count (blows/foot)	USCS ^b	Unit ^c	Content (%)	Gravel (%)	Sand (%)	Fines (%)	microns (%)	Liquid	Plastic Limit	Nonplastic	ASTM Standard	Soil Description
S-3	55.01	11	SPT	10	SM	НА	30.6			25.5					D1140	Black, silty, fine to medium SAND; trace of organics (sandier portion of sample)
5-5	55.01	11	SPT	10	SIM	НА	30.0			25.5					D1140	organics (sancher portion of sample)
S-3	60	12	SPT	18	SM	HA	26.5			47.6					D1140	Black, silty, fine SAND; trace of organics
S-3	65	13	SPT	14	SP-SM	HA	21.5			8.4					D1140	Black, slightly silty, fine to medium SAND; trace of organics
G 2	70		CDT	10	C1 (05.5		06.0	10.1					D (00	
S-3	70	14	SPT	19	SM	HA	25.7	0.0	86.9	13.1					D422	Black, silty, fine to medium SAND Black, slightly silty, fine to medium SAND;
S-3	75	15	SPT	23	SP-SM	HA	16.2			9.3					D1140	trace of organics
S-3	80	16	SPT	14	ML	НА	29.4			51.4					D1140	Dark gray-brown, fine sandy SILT; trace of organics
S-3	85.6	17	SPT	10	SM	HA	25.1	0.0	72.3	27.7	2.0				D422	Black, silty, fine to medium SAND Black, slightly silty, fine to medium SAND;
S-3	90	18	SPT	25	SP-SM	HA	16.3			7.1					D1140	trace of organics
S-3	95	19	SPT	17	SM	НА	23.2			14.9					D1140	Black, silty, fine to medium SAND; trace of organics
5-5	95	19	SPT	17	SM	НА	23.2			14.9					D1140	Black, slightly silty, fine SAND; trace of
S-3	100	20	SPT	32	SP-SM	HA	17.6			9.2					D1140	organics
S-3	105	21	SPT	22	SM	HA	21.5			22.1					D1140	Black, silty, fine SAND; trace of organics
							10.0								D (22	
S-3	110	22	SPT	25	SM	HA	18.0	0.0	87.2	12.8					D422	Black, silty, fine SAND
S-3	115	23	SPT	31	SM	HA	22.0			14.3					D1140	Black, silty, fine SAND; trace of organics
S-3	120	24	SPT	21	ML	НА	26.8	0.0	48.8	51.2	4.5				D422	Black, fine sandy SILT
S-3	125	25	SPT	41	SP-SM	HA	23.0			5.6					D1140	Black, slightly silty, fine SAND
S-3	130	26	SPT	33	SM	HA	17.4			12.6					D1140	Black, silty, fine SAND; trace of organics
S-3	135.2	27	SPT	17	ML	HE	25.0	0.0	33.5	66.5	4.0	27	27	NP	D422/D4318	Black, fine sandy SILT, trace of clay; trace of organics
5-5	133.2	21	511	17	IVIL	III	23.0	0.0	33.5	00.5	4.0	27	21	INF	D422/D4318	
S-3	140	28	SPT	6	SM	HE	24.2			26.7					D1140	Black, silty, fine SAND; scattered organics
S-3	140.8	28	SPT	6	ML	HE	26.9			74.4					D1140	Black, fine sandy SILT; trace of organics
8-3	145.5	29	SPT	6	ML	HE	32.9	0.0	9.3	90.7	10.2				D422	Black, slightly fine sandy SILT, trace of clay
	145.5				1911	1112	54.9	0.0	7.5	20.7	10.2				D722	Dark gray-brown, clayey SILT, trace of fine
S-3	150	30	SPT	0	ML	HE	29.6					47	29		D4318	sand; scattered shell fragments Dark gray-brown, clayey SILT, trace of fine
S-3	155	31	SPT	0	ML	HE	36.2	0.0	2.3	97.7	17.2				D422	sand
	1.00			<u>_</u>	17	II.	26.5								DING	Dark gray-brown, clayey SILT; trace of
S-3	160	32	SPT	0	ML	HE	36.5					47	29		D4318	organics

TABLE C-1
SUMMARY OF GEOTECHNICAL LABORATORY TESTS

								Grain Size Analyses ^d			Plasticity ^e					
Boring No.	Top Depth (feet)	Sample No.	Sample Type ^a	Blow Count (blows/foot)	USCS ^b	Geologic Unit ^c	Water Content (%)	Gravel (%)	Sand (%)	Fines (%)	<2 microns (%)	Liquid Limit		Nonplastic	ASTM Standard	Soil Description
6.2	165	22	CDT	1	М	ШЕ	10.9	0.0	41.2	50.0	4.2				D422	Dark gray-brown, fine sandy SILT; interbedded
S-3	165	33	SPT	1	ML	HE	19.8	0.0	41.2	58.8	4.3				D422	with silty, fine to medium sand Dark gray-brown, slightly clayey SILT, trace of
S-3	170	34	SPT	10	ML	HE	31.4					34	29		D4318	fine sand
S-3	190	38	SPT	50/3"	SP-SM	QPGO	4.2	24.2	69.9	6.0					D422	Green-gray, slightly silty, fine gravelly SAND

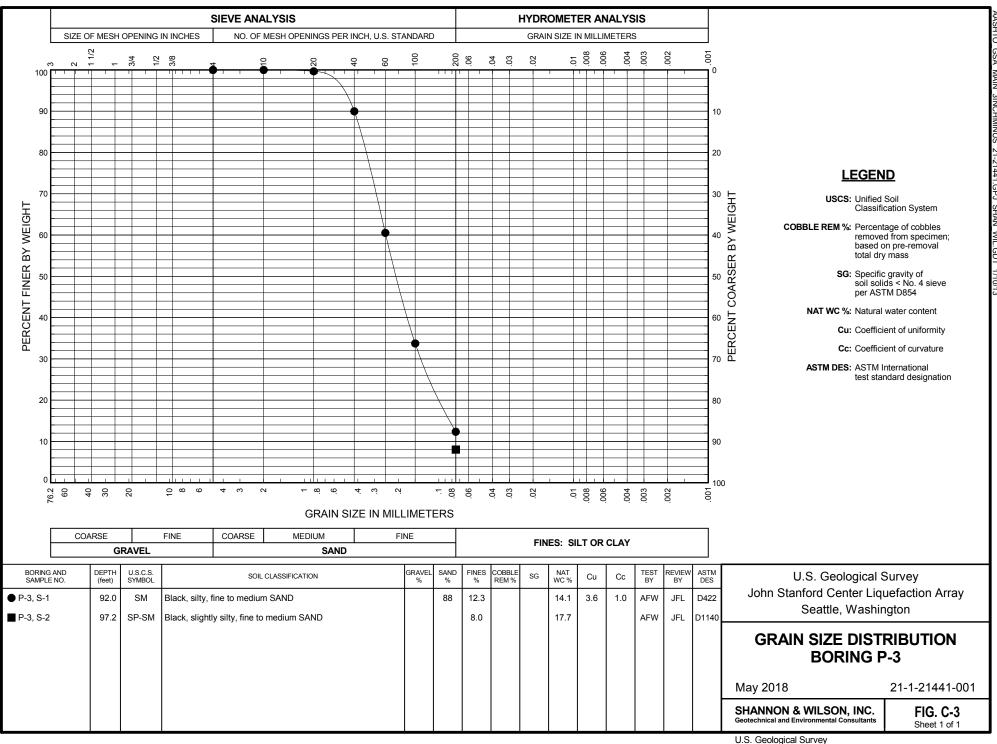

Notes:

^(a) SPT = Standard Penetration Test (split-spoon) sample.


^(b) USCS = Unified Soil Classification System. See Figure A-1 in Appendix A for explanation of classifications.

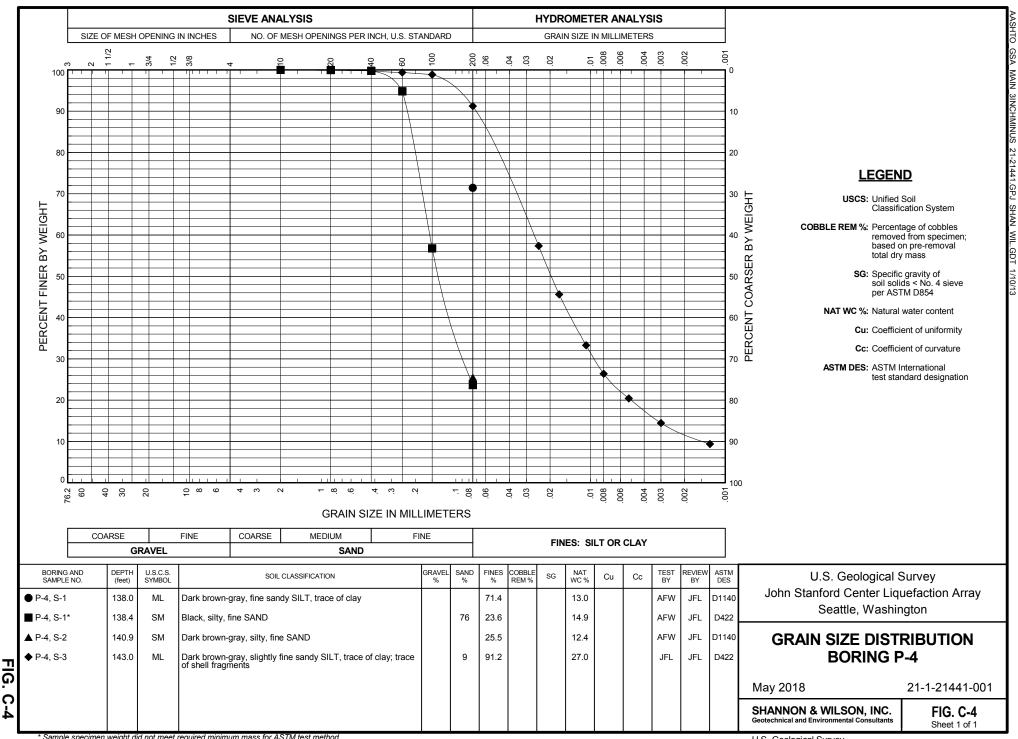
(c) See Figure 3 for descriptions of geologic units.
 (d) See Appendix C for plots of the grain size curves.

(e) NP = Nonplastic. See Appendix C for plasticity plots.

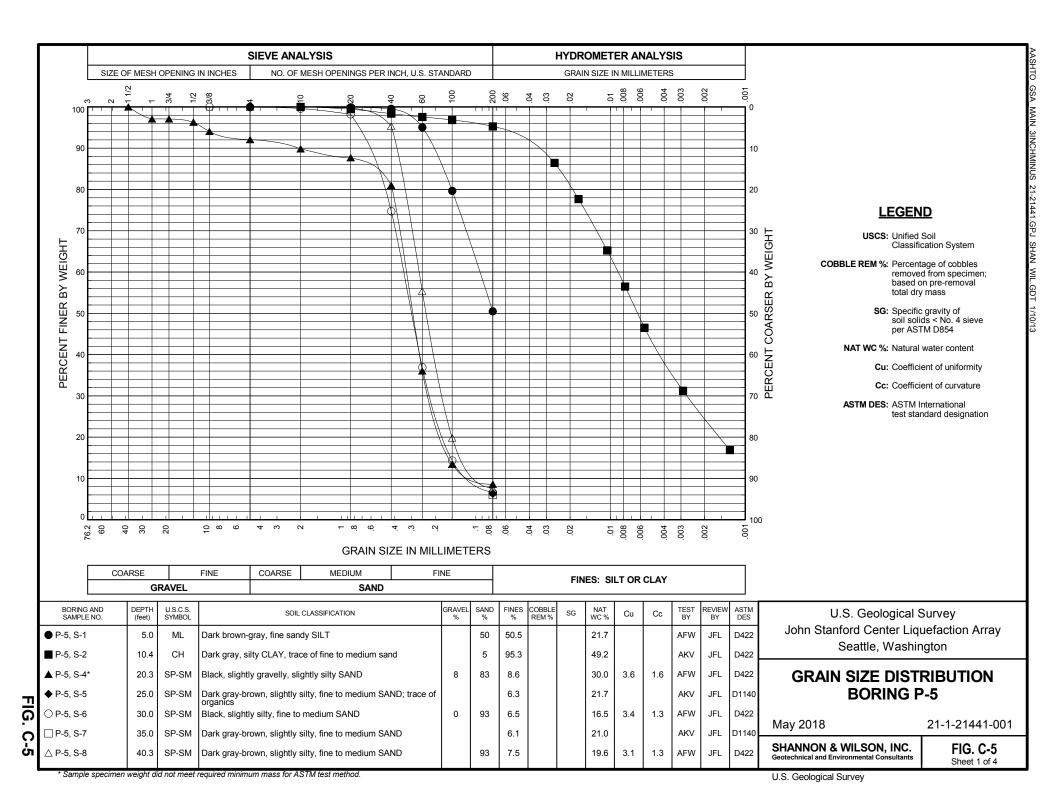

ဂု

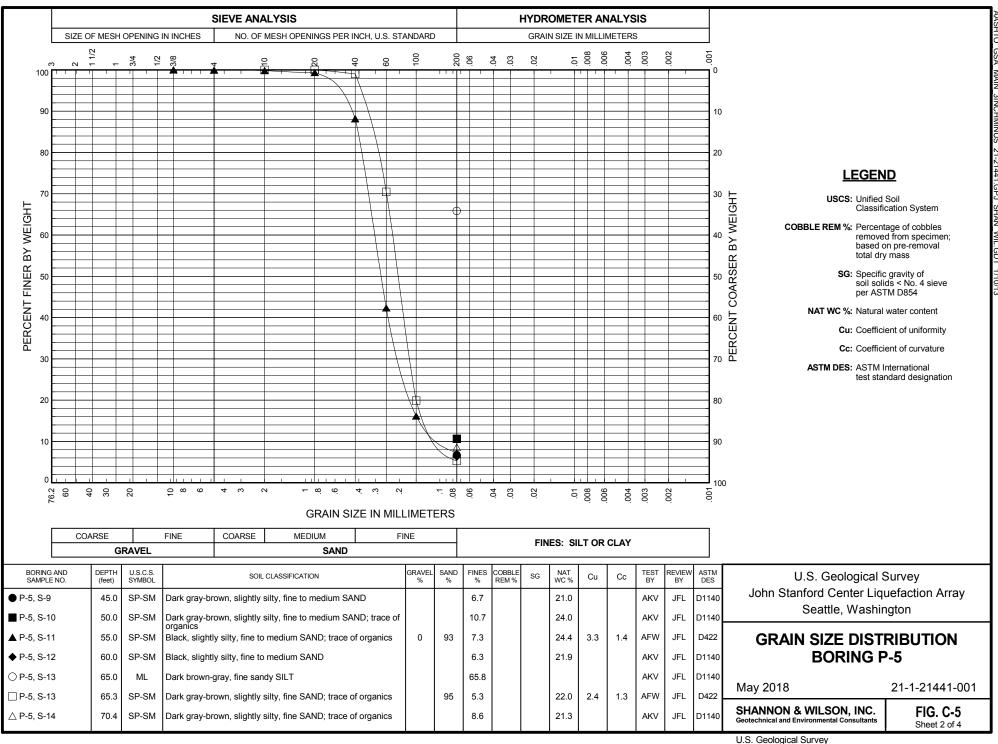
21-21441.GPJ SHAN ٧IL ..GDT

U.S. Geological Survey


FIG. C-2

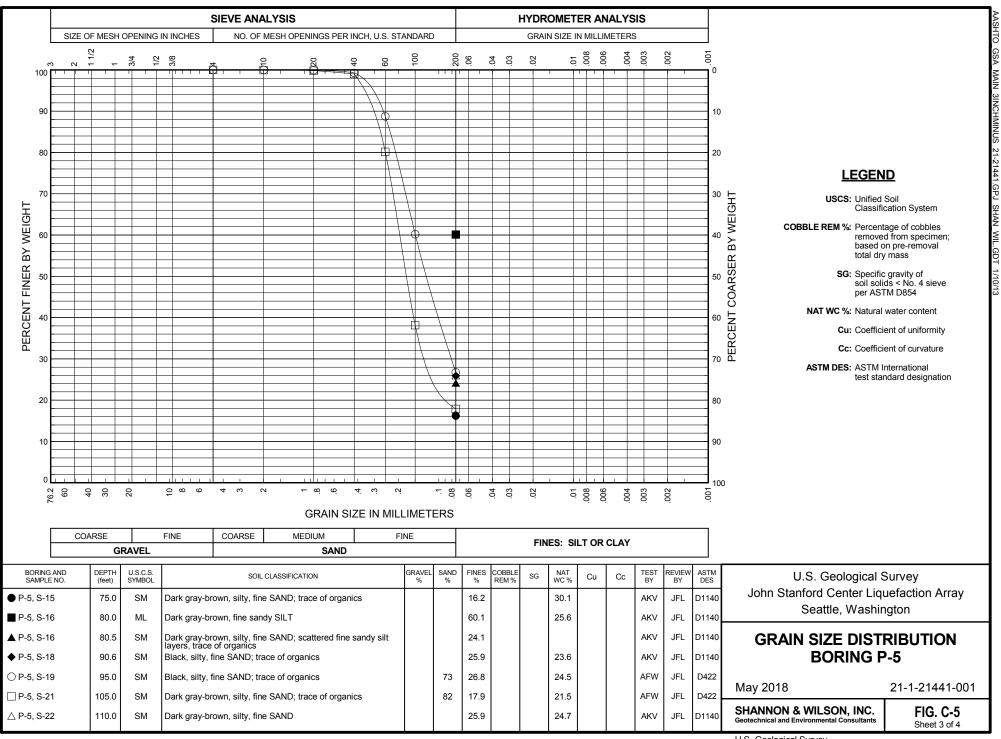
C


ŵ

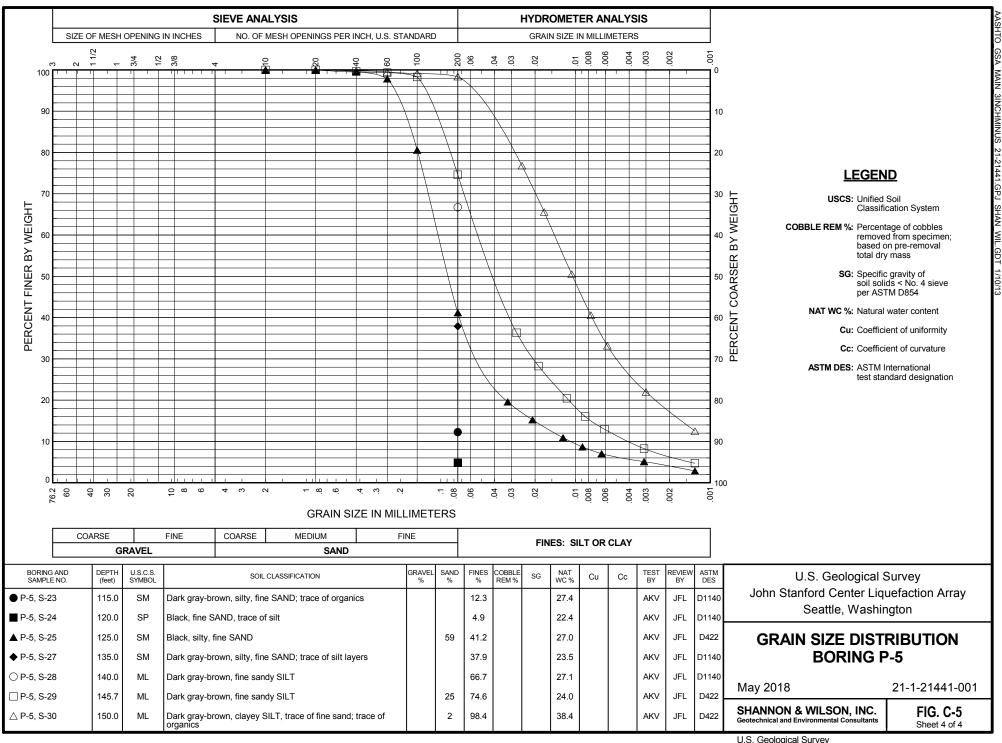

GSA MAIN **3INCHMINUS** 21-21441.GPJ SHAN_WIL ..GDT

Sample specimen weight did not meet required minimum mass for ASTM test method.

FIG.

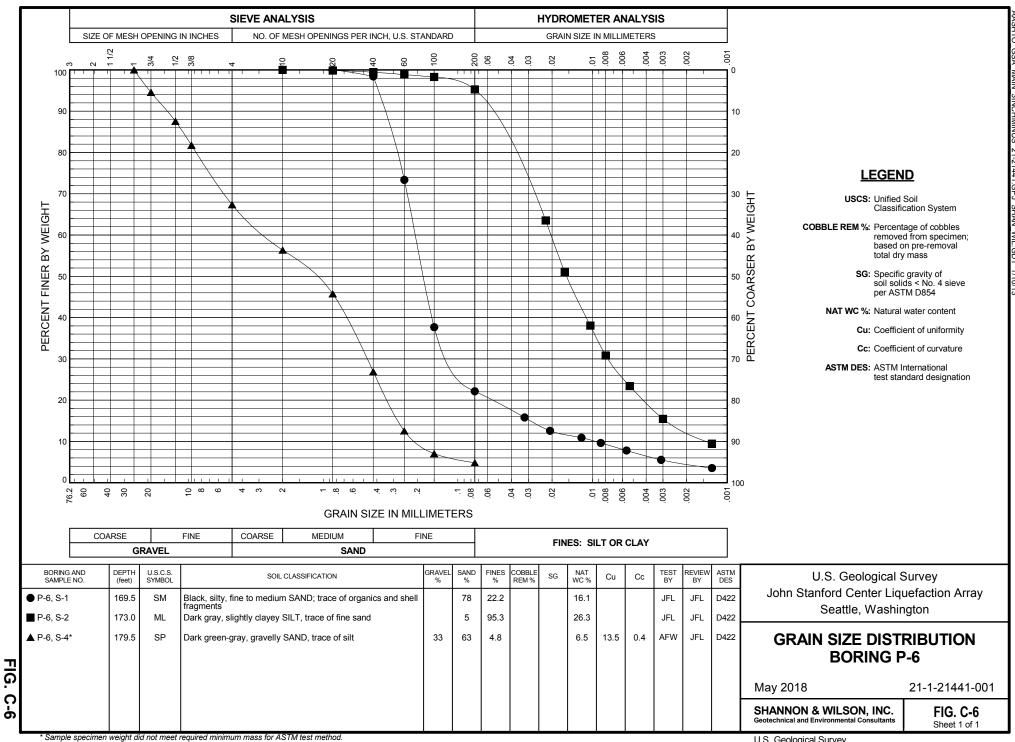


C


Ċ٦

MAIN **3INCHMINUS** 21-21441.GPJ SHAN Χ . GD

C


Ċ٦

3INCHMINUS 21-21441.GPJ SHAN Χ

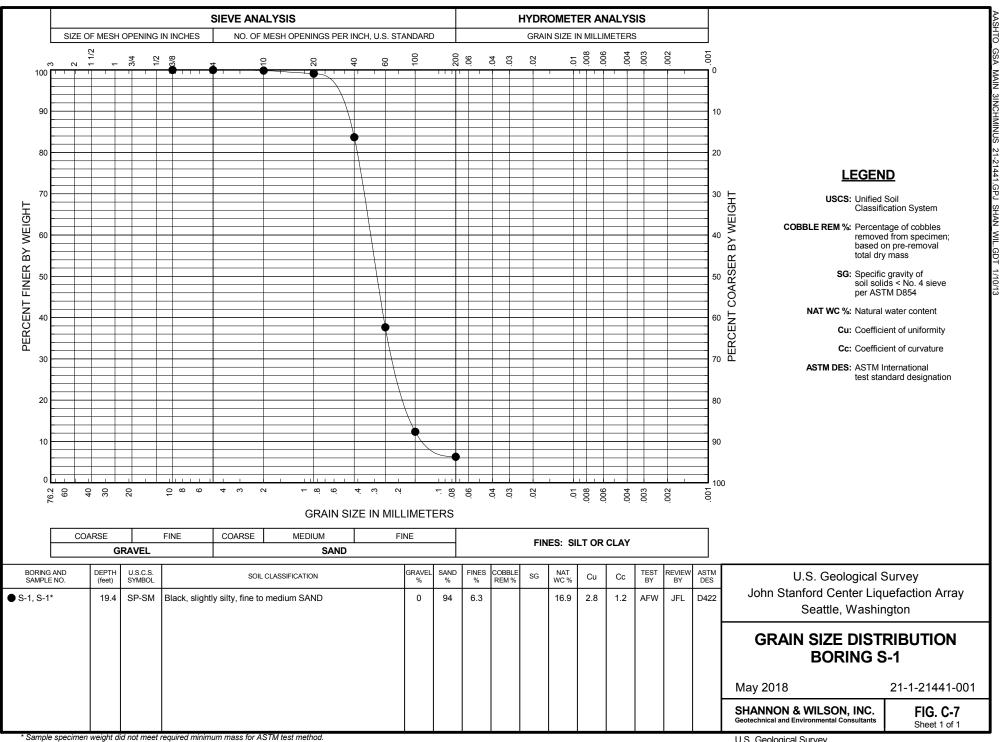
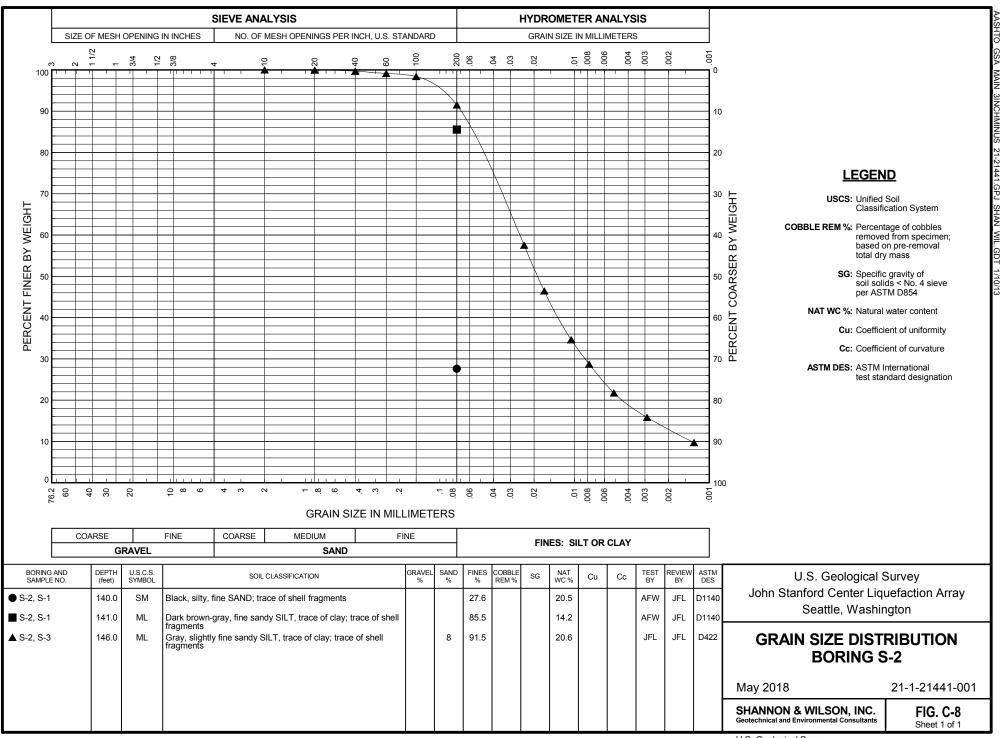

U.S. Geological Survey

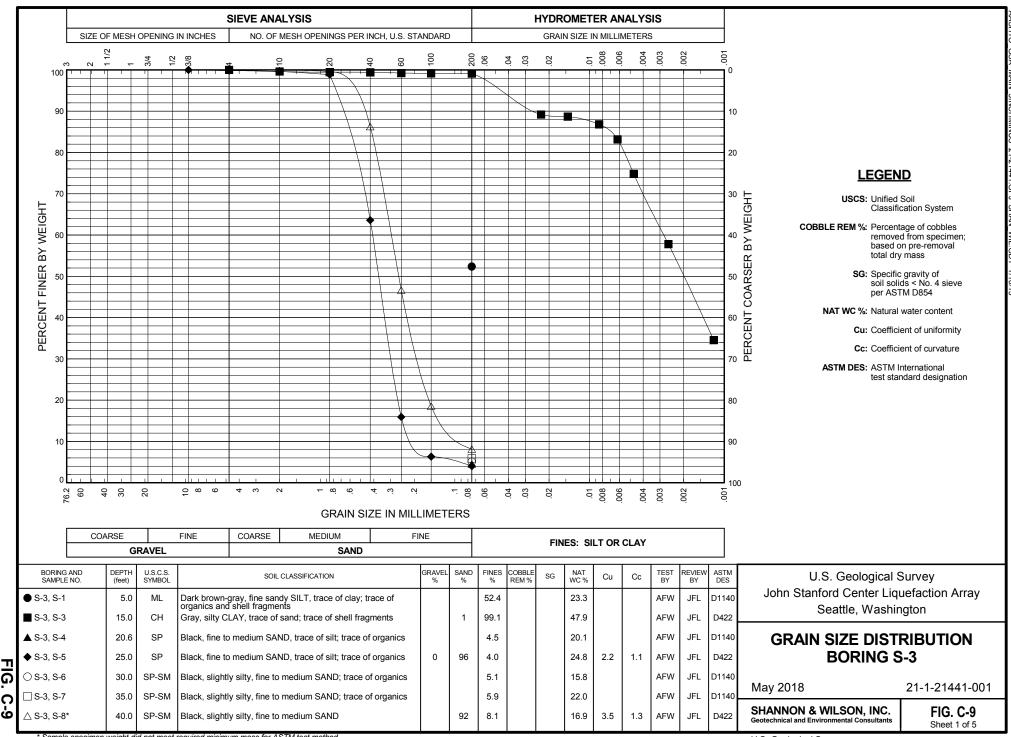
FIG. C ĊΠ



U.S. Geological Survey

MAIN **3INCHMINUS** 21-21441.GPJ SHAN Χ .. GDT

ဂု



0

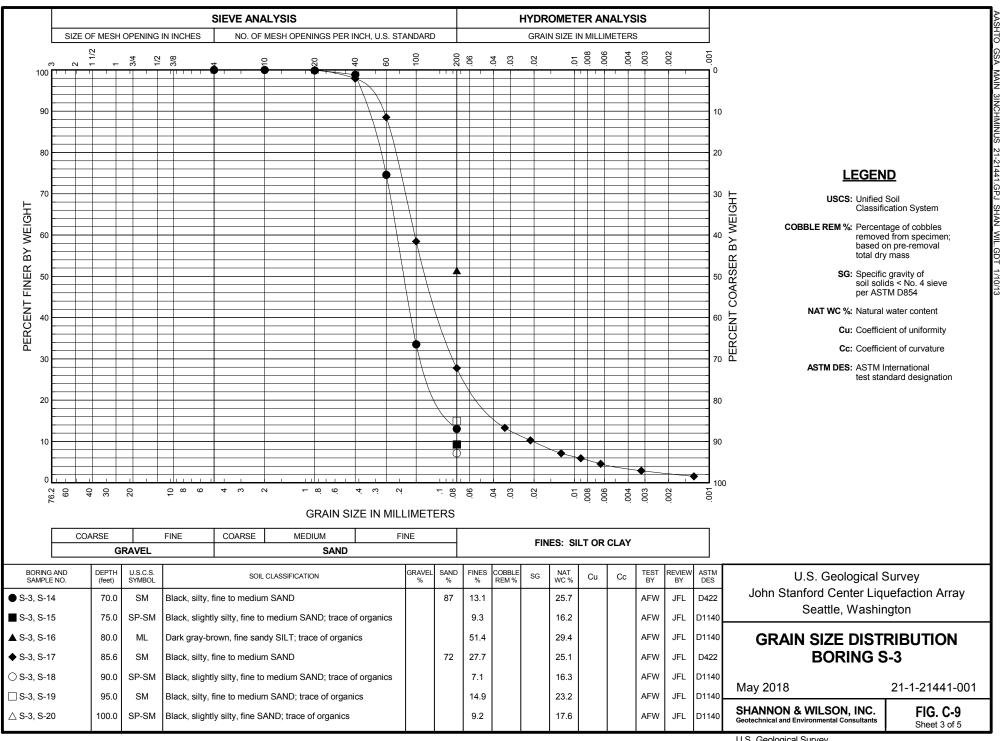
ά

U.S. Geological Survey

MAIN **3INCHMINUS** 21-21441.GPJ SHAN

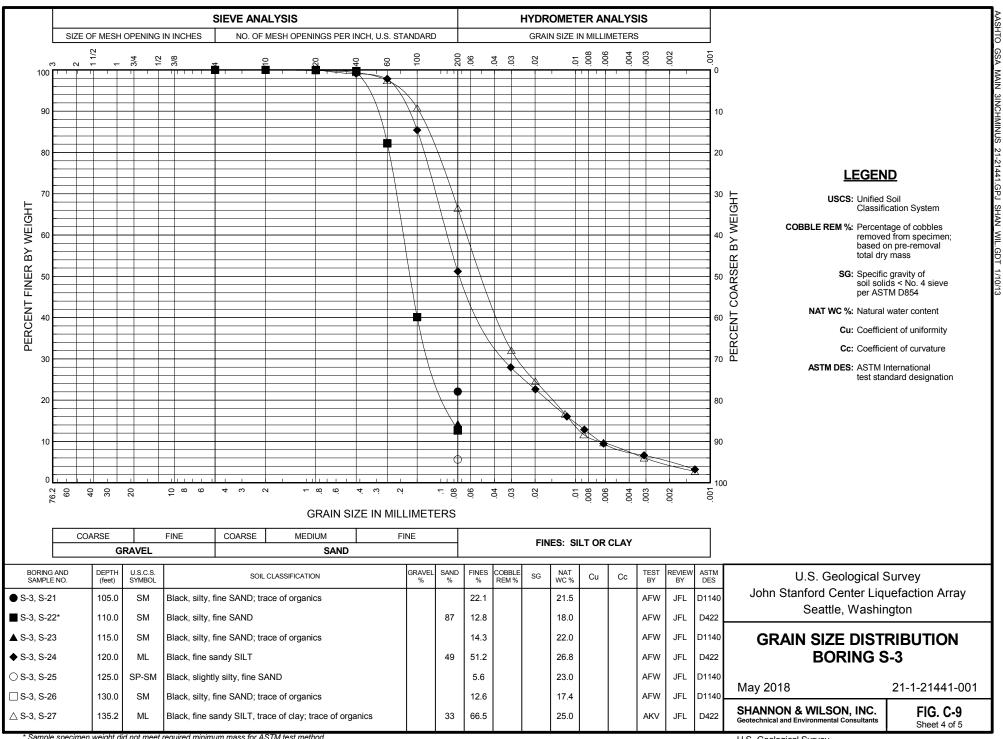
Sample specimen weight did not meet required minimum mass for ASTM test method.

FIG.


C

C

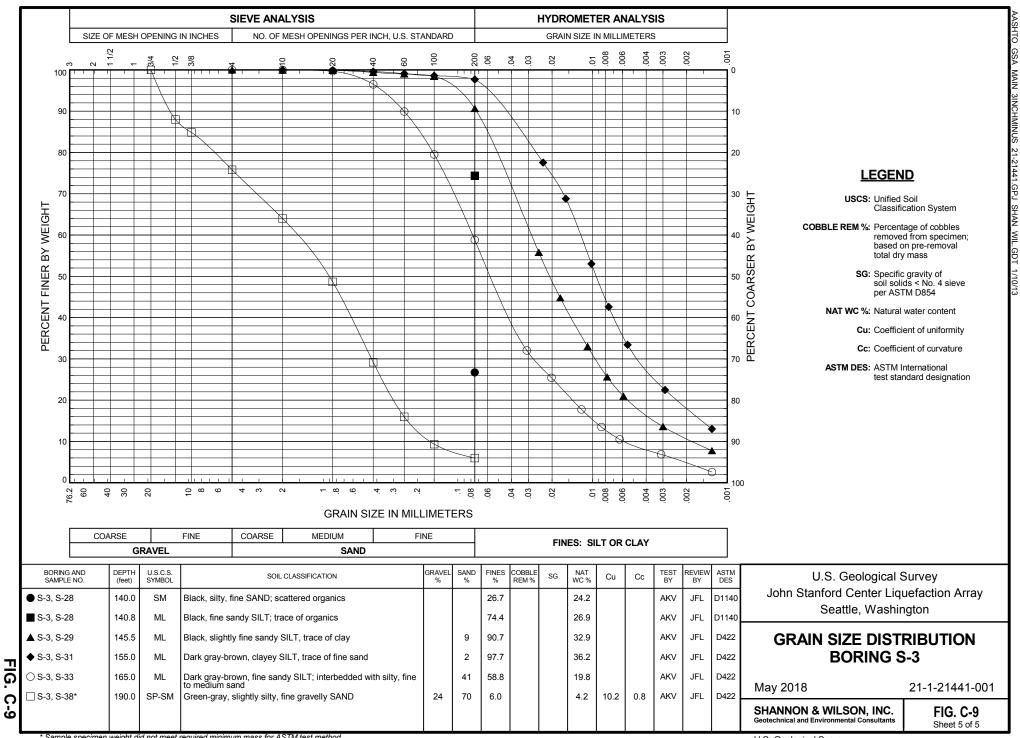
ம்


MAIN **3INCHMINUS** 21-21441.GPJ SHAN Χ . GD

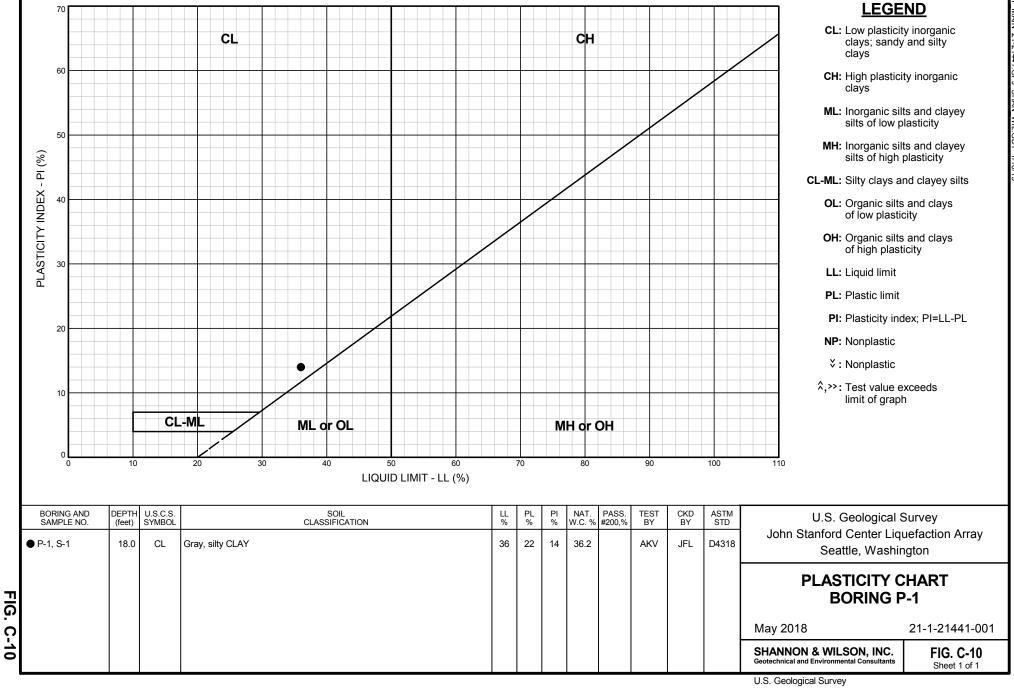
C

ம்

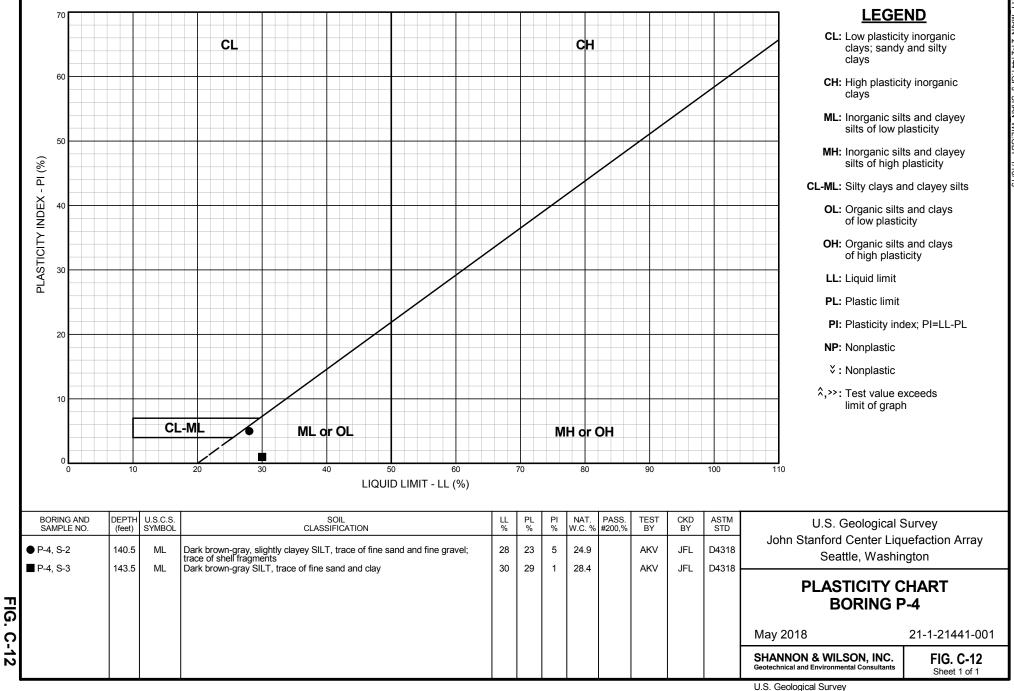
21-21441.GPJ SHAN Χ . GD

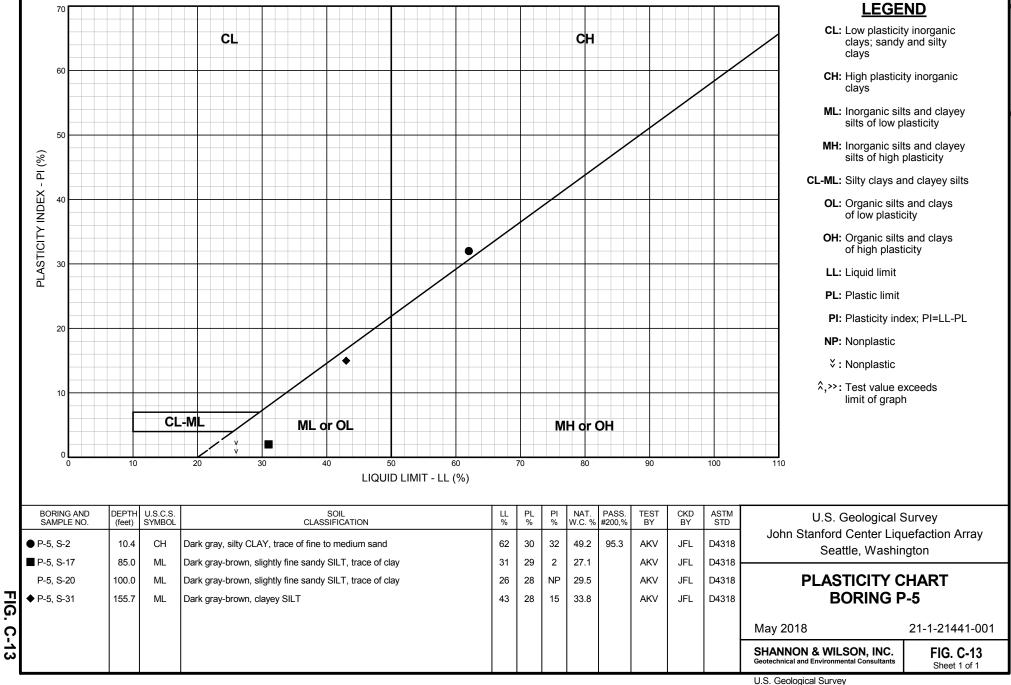


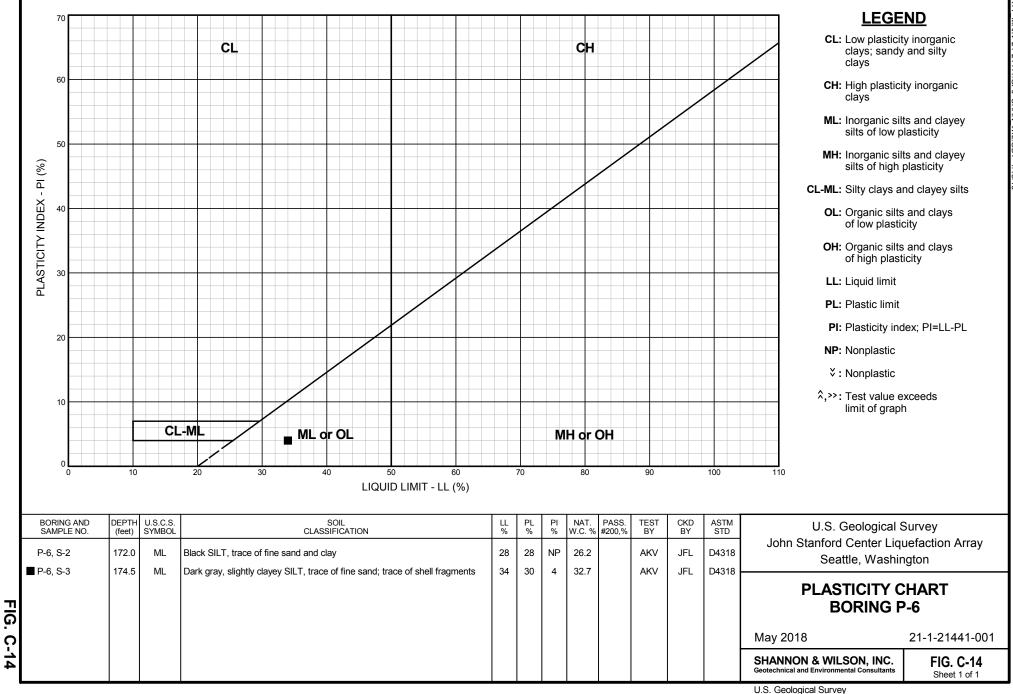
* Sample specimen weight did not meet required minimum mass for ASTM test method.

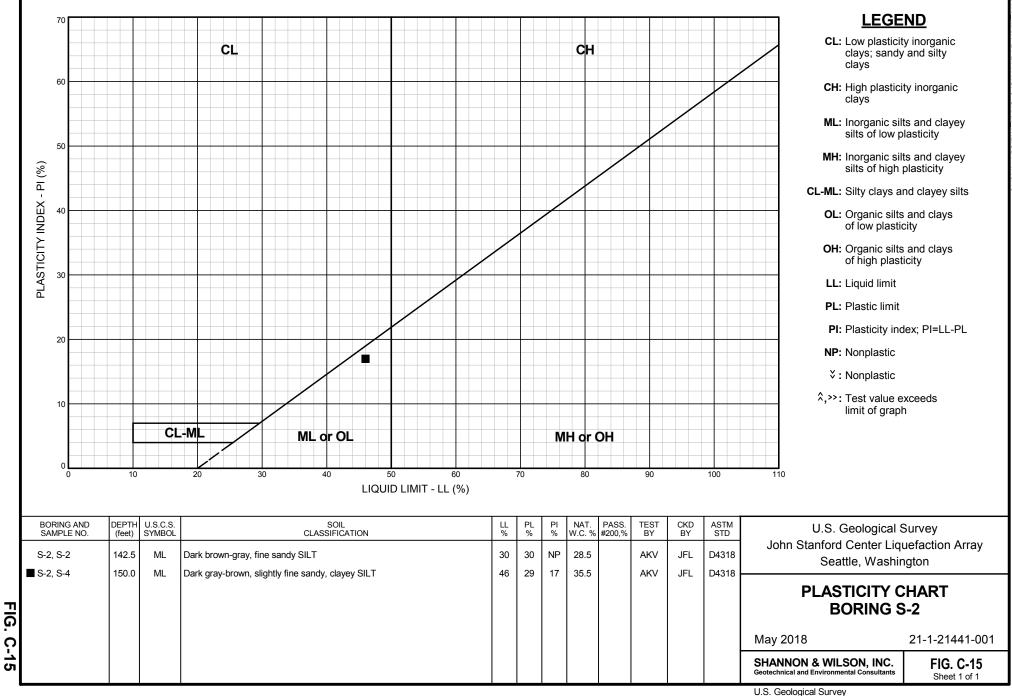

FIG.

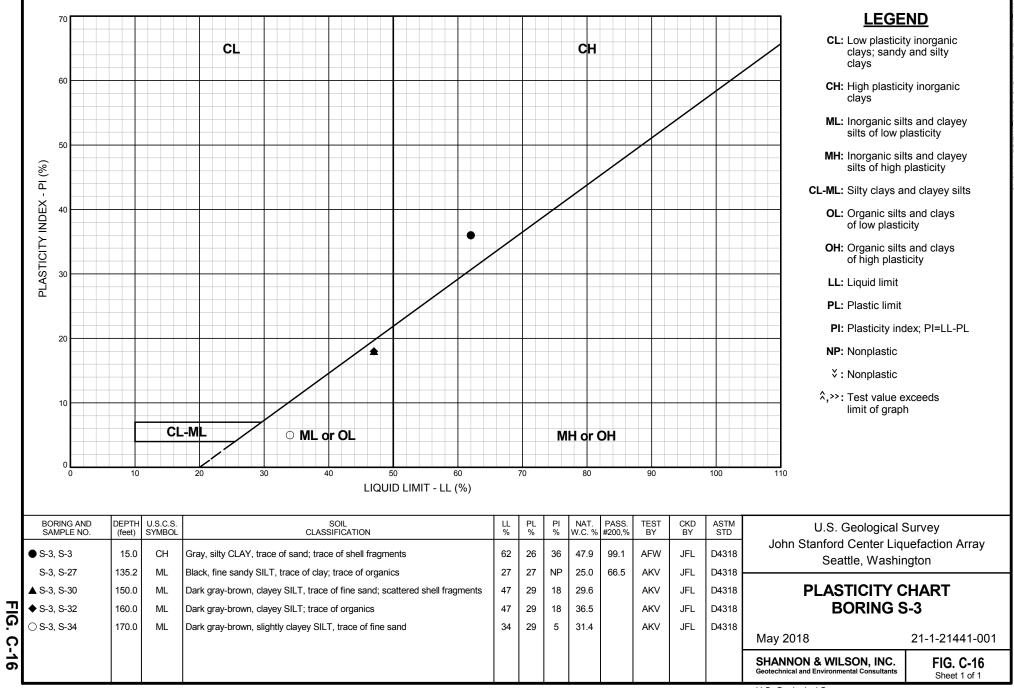

C


പ്പ




* Sample specimen weight did not meet required minimum mass for ASTM test method.





U.S. Geological Survey

APPENDIX D Non-Project Information

CONTENTS

- D.1: Seattle Monorail Project Draft Geotechnical Data Report Excerpts
- D.2: Seattle Monorail Project Geotechnical Characterization Report Excerpts

D.1 SEATTLE MONORAIL PROJECT DRAFT GEOTECHNICAL DATA REPORT EXCERPTS

CONTENTS

- Excerpts from Appendix A, Subsurface Exploration Program
 - Table A-1, Geologic Units and Descriptions
 - Figure A-1, Soil Classification and Log Key (2 sheets)
 - Table A.2-1, Summary of Field Explorations, SODO Segment (2 sheets)
 - Figure A.2-10, Log of Boring SD-109 (3 sheets)
 - Figure A.2-11, Log of Boring SD-110 (3 sheets)
 - Figure A.2-14, Log of Boring SD-112 (3 sheets)
 - Figure A.2-15, Log of Boring SD-113 (3 sheets)
 - Figure A.2-24, Log of Boring SD-122 (3 sheets)
 - Figure A.2-27, Log of Probe SD-203 (2 sheets)
 - Figure A.2-28, Log of Probe SD203A (3 sheets)
- Excerpts from Appendix C, In Situ Testing
 - Table C.1-1 Summary of Pressuremeter Test Results
 - Excerpt from Report "Pressuremeter Testing Seattle Monorail," (text and results from boring SD-122).
 - Excerpt from Report "Seattle Monorail Borings BX-102, BX-107, IB-104, IB-111, IB-115, SD-101, SD-108, SD-110, SD-116 and WS-105 Suspension P & S Velocities," (text and results from boring SD-110).
- Excerpts from Appendix D, Laboratory Testing
 - Table D-2, Summary of Geotechnical Laboratory Testing SODO (34 sheets)
 - Figure D.1-28, Grain Size Distribution, Boring SD-110
 - Figure D.1-40, Grain Size Distribution, Boring SD-122
 - Figure D.2-24, Plasticity Chart, Boring SD-110
 - Figure D.2-36, Plasticity Chart, Boring SD-122
 - Excerpt from Report "Cyclic Testing of Silt-Rich Soils from the Seattle Monorail Alignment, Seattle, Washington" (text and results for samples from boring SD-122)

APPENDIX A

SUBSURFACE EXPLORATION PROGRAM

TABLE OF CONTENTS

LIST OF TABLES

Table No.

A-1 Geologic Units and Descriptions (3 sheets)

LIST OF FIGURES

Figure No.

A-1 Soil Classification and Log Key (2 sheets)

LIST OF SUBAPPENDICES

- A.1 Field Exploration Logs West Seattle
- A.2 Field Exploration Logs SODO
- A.3 Field Exploration Logs Downtown
- A.4 Field Exploration Logs Seattle Center
- A.5 Field Exploration Logs Interbay
- A.6 Field Exploration Logs Ballard Crossing
- A.7 Field Exploration Logs Ballard
- A.8 Underground Utilities Encountered During Field Explorations
- A.9 Field Exploration Logs March 2004 Borings

		TABLE A-1 CEALACTATINITE AND DESADIT	
		GEOLOGIC UNITS AND DESCRIFTIONS	SUDIT
Unit Name ¹	Abbrev.	General Unit Description	Soil Description
HOLOCENE UNITS	ĽS		
Fill	Hf	Fill placed by humans, both engineered and nonengineered	Various materials, including debris; cobbles and boulders common; commonly dense or stiff if engineered, but very loose to dense or very soft to stiff if non-engineered
Landslide Deposits	HIS	Deposits of landslides, normally at and adjacent to the toe of slopes	Disturbed, heterogeneous mixture of one or more soil types; may contain wood and other organics; loose or soft, with random dense or hard pockets
Alluvium	Ha	River or creek deposits, normally associated with historical streams, including deltaic and overbank deposits	Sand, silty Sand, gravelly Sand; very loose to very dense
Peat Deposits	dH	Depression fillings of organic materials	Peat, peaty Silt, organic Silt, very soft to medium stiff
Estuarine Deposits	He	Fine-grained sediments deposited in brackish water associated with rivers and streams located along the present and former Puget Sound shoreline	Clayey Silt, silty Clay; commonly with scattered organics; very soft to stiff or very loose to medium dense
Lake Deposits	IH	Depression fillings of fine-grained soils	Sandy Silt, Clayey silt, silty clay; commonly with scattered organics; very soft to stiff or very loose to medium dense.
Beach Deposits	ЯН	Deposits along present and former shorelines of Puget Sound and tributary river mouths	Silty Sand, sandy Gravel, gravelly Sand, wood and shell debris common; loose to dense
Reworked Glacial Deposits	Hrw	Glacially deposited soils that have been reworked by fluvial or wave action	Sand, silty Sand, gravelly Sand; lies on top of glacially overridden soils; loose to dense

TABLE A-1

SHANNON & WILSON, INC.

21-1-09110-090 REVISED FOR ADDENDUM NO. 095-1

Page 1 of 3 (see Page 3 for notes)

4/1/2004-ADD 104-1 Table A-1.xts-tjs

TABLE A-1 GEOLOGIC UNITS AND DESCRIPTIONS

Unit Name ¹	Abbrev.	General Unit Description	Soil Description
QUATERNARY VASHON UNITS	NU NOHSA	ITS	
Recessional Outwash	Qvro	Glaciofluvial sediment deposited as glacial ice retreated	Clean to silty Sand, gravelly Sand, sandy Gravel; cobbles and boulders common; loose to very dense
Recessional Lacustrine Deposits	Qvrl	Glaciolacustrine sediment deposited as glacial ice retreated	Fine Sand, Silt, and Clay; medium dense to dense, soft to hard
Ice-Contact Deposits	Qvri	Heterogeneous soils deposited against or adjacent to ice during the wasting of glacial ice; commonly reworked	Stratified to irregular bodies of Gravel, Sand, Silt, and Clay; loose to dense
Ablation Till	Qvat	Heterogeneous soils deposited during the wasting of glacial ice; generally not reworked	Gravelly silty Sand, silty gravelly Sand, with some clay; cobbles and boulders common; loose to very dense or soft to hard
Trit	Qvt	Lodgement till laid down along the base of the glacial ice	Gravelly silty Sand, silty gravelly Sand ("hardpan"); cobbles and boulders common; very dense
Till-like Deposits (diamict)	Qvd	Glacial deposit intermediate between till and outwash, subglacially reworked	Silty graveIly Sand, silty Sand, sandy Gravel; highly variable over short distances; cobbles and boulders common; dense to very dense
Advance Outwash	Qva	Glaciofluvial sediment deposited as the glacial ice advanced through the Puget Lowland	Clean to silty Sand, gravelly Sand, sandy Gravel; dense to very dense
Glaciolacustrine Deposits	Qvgl	Fine-grained glacial flour deposited in proglacial lake in Puget Lowland	Silty Clay, clayey Silt, with interbeds of Silt and fine Sand; locally laminated; scattered organic fragments locally; hard or dense to very dense

TABLE A-1 GEOLOGIC UNITS AND DESCRIPTIONS

Unit Name ¹	Abbrev.	General Unit Description	Soil Description
QUATERNARY PRE-VASHON UNITS	RE-VASHO	N UNITS	
Fluvial Deposits	Qpnf	Alluvial deposits of rivers and creeks	Clean to silty Sand, gravelly Sand, sandy Gravel; very dense
Lacustrine Deposits	Qpnl	Fine-grained lake deposits in depressions, large and small	Fine sandy Silt, silty fine Sand, clayey Silt; scattered to abundant fine organics; dense to very dense or very stiff to hard
Peat Deposits	Qpnp	Depression fillings of organic materials	Peat, peaty Silt, organic Silt, hard
Landslide Deposits	Qpls	Heterogeneous deposits of landslide debris	Chaotic mixture of silt, sand, clay and gravel; may contain wood and other organics; hard or very dense
Outwash	Qpgo	Glaciofluvial sediment deposited as the glacial ice advanced or retreated through the Puget Lowland	Clean to silty Sand, gravelly Sand, sandy Gravel; very dense
Glaciolacustrine Deposits	Qpgl	Fine-grained glacial flour deposited in proglacial lake in Puget Lowland	Silty Clay, clayey Silt, with interbeds of Silt and fine Sand; very stiff to hard or very dense
Till	Qpgt	Lodgement till laid down along the base of the glacial ice	Gravelly silty Sand, silty gravelly Sand ("hardpan"); cobbles and boulders common; very dense
Till-like Deposits (diamict)	Qpgd	Glacial deposits intermediate between till and outwash, subglacially reworked	Silty gravelly Sand, silty Sand, sandy Gravel; highly variable over short distances; cobbles and boulders common; very dense
Glaciomarine Deposits	Qpgm	Till-like deposits with clayey matrix deposited in proglacial lake by icebergs, floating ice, and gravity currents	Variable mixture of Clay, Silt, Sand and Gravel; scattered shells locally; cobbles and boulders common; very dense or hard

NOTE:

The geologic units are interpretive and based on our opinion of the grouping of complex sediments and soil types into units appropriate for the project. The description of each geologic unit includes only general information regarding the environment of deposition and basic soil characteristics. For example, cobbles and boulders are only included in the description of those units where they are most prominent. .-i

4/1/2004-ADD 104-1 Table A-1.xls-tjs

21-1-09110-090 REVISED FOR ADDENDUM NO. 095-1

Page 3 of 3

Shannon & Wilson, Inc. (S&W), uses a soil classification system modified from the Unified Soil Classification System (USCS). Elements of the USCS and other definitions are provided on this and the following page. Soil descriptions are based on visual-manual procedures (ASTM D 2488-93) unless otherwise noted.

S&W CLASSIFICATION OF SOIL CONSTITUENTS

- MAJOR constituents compose more than 50 percent, by weight, of the soil. Major consituents are capitalized (i.e., SAND).
- Minor constituents compose 12 to 50 percent of the soil and precede the major constituents (i.e., silty SAND). Minor constituents preceded by "slightly" compose 5 to 12 percent of the soil (i.e., slightly silty SAND).
- Trace constituents compose 0 to 5 percent of the soil (i.e., slightly silty SAND, trace of gravel).

MOISTURE CONTENT DEFINITIONS

- Dry
 Absence of moisture, dusty, dry to the touch

 Moist
 Damp but no visible water
- Wet Visible free water, from below water table

ABBREVIATIONS

GRAIN SIZE DEFINITION

DESCRIPTION	SIEVE NUMBER AND/OR SIZE
FINES	< #200 (0.08 mm)
SAND* - Fine - Medium - Coarse	#200 to #40 (0.08 to 0.4 mm) #40 to #10 (0.4 to 2 mm) #10 to #4 (2 to 5 mm)
GRAVEL* - Fine - Coarse	#4 to 3/4 inch (5 to 19 mm) 3/4 to 3 inches (19 to 76 mm)
COBBLES	3 to 12 inches (76 to 305 mm)
BOULDERS	> 12 inches (305 mm)

* Unless otherwise noted, sand and gravel, when present, range from fine to coarse in grain size.

RELATIVE DENSITY / CONSISTENCY

COARSE-GF	RAINED SOILS	FINE-GRAINED SOILS								
N, SPT, <u>BLOWS/FT.</u>	RELATIVE DENSITY	N, SPT, <u>BLOWS/FT.</u>	RELATIVE CONSISTENCY							
0 - 4	Very loose	Under 2	Very soft							
4 - 10	Loose	2 - 4	Soft							
10 - 30	Medium dense	4 - 8	Medium stiff							
30 - 50	Dense	8 - 15	Stiff							
Over 50	Very dense	15 - 30	Very stiff							
		Over 30	Hard							

WELL AND OTHER SYMBOLS

ATD Elev.	At Time of Drilling Elevation		Bent. Cement Grout	Surface Seal	ce Cement
Elev. ft	feet		Bentonite Grout	Aspha	alt or Cap
FeO	Iron Oxide				
MgO	Magnesium Oxide		Bentonite Chips	Sloug	h
HŠA	Hollow Stem Auger		Silica Sand	Bedro	ick
ID	Inside Diameter				
in	inches		PVC Screen		
lbs	pounds		Vibroting Mino		
Mon.	Monument cover		Vibrating Wire		
Ν	Blows for last two 6-inch increments	·			
NA	Not applicable or not available				
NP	Non plastic				
OD	Outside diameter				
OVA	Organic vapor analyzer				
PID	Photo-ionization detector				
ppm	parts per million		· · · · · ·		
PVC	Polyvinyl Chloride		Sea	attle Monorail Pro	ject
SS	Split spoon sampler			eattle, Washingto	•
SPT	Standard penetration test				
USC	Unified soil classification				
WLI	Water level indicator			CLASSIFIC	
		J	A	ND LOG KE	Y
			December 200	3 2	21-1-09910-091
			SHANNON & Geotechnical and Env	WILSON, INC.	FIG. A-1 Sheet 1 of 2

Ν	AJOR DIVISIONS	;		GRAPHIC IBOL	TYPICAL DESCRIPTION
		Clean Gravels	GW		Well-graded gravels, gravels, gravel/sand mixtures, little or no fine:
	Gravels (more than 50%	(less than 5% fines)	GP		Poorly graded gravels, gravel-sand mixtures, little or no fines
	` of coarse fraction retained on No. 4 sieve)	Gravels with Fines	GM		Silty gravels, gravel-sand-silt mixture
COARSE- GRAINED SOILS		(more than 12% fines)	GC		Clayey gravels, gravel-sand-clay mixtures
(more than 50% retained on No. 200 sieve)		Clean Sands (less than 5%	sw		Well-graded sands, gravelly sands, little or no fines
	Sands (50% or more of		SP		Poorly graded sand, gravelly sands, little or no fines
	coarse fraction passes the No. 4 sieve)	Sands with Fines	SM		Silty sands, sand-silt mixtures
		(more than 12% fines)	SC		Clayey sands, sand-clay mixtures
		Inorganic	ML		Inorganic silts of low to medium plasticity, rock flour, sandy silts, gravelly silts, or clayey silts with sligi plasticity
	Silts and Clays (<i>liquid limit less</i> than 50)		CL		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays silty clays, lean clays
FINE-GRAINED SOILS		Organic	OL		Organic silts and organic silty clays low plasticity
(50% or more passes the No. 200 sieve)		Inorcania	мн		Inorganic silts, micaceous or diatomaceous fine sands or silty soi elastic silt
Silts and Cla (liquid limit 50 more)		Inorganic	СН		Inorganic clays or medium to high plasticity, sandy fat clay, or gravelly clay
	,	Organic	ОН		Organic clays of medium to high plasticity, organic silts
HIGHLY- DRGANIC SOILS		ic matter, dark in organic odor	PT		Peat, humus, swamp soils with high organic content (see ASTM D 4427)

<u>NOTES</u>

- 1. Dual symbols (symbols separated by a hyphen, i.e., SP-SM, slightly silty fine SAND) are used for soils with between 5% and 12% fines or when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart.
- 2. Borderline symbols (symbols separated by a slash, i.e., CL/ML, silty CLAY/clayey SILT; GW/SW, sandy GRAVEL/gravelly SAND) indicate that the soil may fall into one of two possible basic groups.

Seattle Monorail Project Seattle, Washington

SOIL CLASSIFICATION AND LOG KEY

December 2003

21-1-09910-091

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. A-1 Sheet 2 of 2

TABLE A.2-1 SUMMARY OF FIELD EXPLORATIONS SODO SEGMENT

Special Testing	eter Tests		lests Perfo Performed Performed	× Tests Perfo Performed Performed C Obtained C D D D D D D D D D D D D D D D D D D	× Tests Perfo Pressureme Performed Xube Samp Motained	X Tests Perfo Pressuremed Performed X Dbtained	× Tests Performed Performed Performed × × Performed	X Tests Performed Pressurement Pressurement Pressurement Pressurement X X Dbtained	X Tests Performed Pressurement Pressurement Pressurement Pressurement X X X X	× Tests Performed Pressuremed Pressuremed Performed Performed × × × ×	X Tests Performed Pressurement Pressurement Pressurement Pressurement X X X	X Tests Performed Pressureme Pressureme Pressureme Pressureme X X X X X X	× × Tests Performed Performed Performed × × ×	× × Tests Performed Pressurement Pressurement × × × × × × × × ×	X X X X X X X X X X X X X X X X X X X	× × × Fests Performed Pressurement Pressurement Pressurement × × × ×	× × × × Fests Performed Pressurement Pressurement Pressurement × × × ×	× × × Tests Performed × × × × × × × × × × × × × × ×	X X X Y Tests Performed Pressurement Pressurement Pressurement Pressurement X X X X X	X X X X Tests Performed Pressurement Pressurement Pressurement Pressurement X X X X X	X X X Y Tests Performed Pressurement Pressurement Pressurement Pressurement X X X X X	X X X Y Tests Performed Pressurement Y X X X X	X X X X Tests Performed Pressurement Y X X X X X X X X X X	× × × × Tests Performed Pressurem × × × × × Pressurem × × × × ×	× × × × × Tests Performed × × × × × × × × × × × × × ×	X X X X Tests Performed Pressurem X X X X X Y X X X X X
bəllsta mic ed	eter sts sts	'iezometer 'erformed 'erformed 'ests Perfo 'ests Perfo			XX	XX	X X	X X	x x	x x	x x	x	x x x													
(nstalled Vibrating Wire Piezometer Installed Energy Tests	nstalled Vibrating Piezometei Bnergy Te	3			X	X	X	×	×	×	×	×								×						
CoD Dinitation Dinitation Monitoring Well Installed	Monitorin		2	GE X	Ē	ЛП	UH XI	LE X	LEI XA																	
End. 27-Aug-03	End 27-Aug-03			7-Aug-03	3 28-Aug-03	2 4_Sen_03													·							
s Start 22-Aug-03 5-Aug-03		22-Aug-03	5-A110-03	0 3m7 0	25-Aug-03	29-Aug-03			5-Sep-03	~ ~																
Surface Elevation ³ [feet] 15.3	Surface Elevation ³ (feet) 14.8 15.3	14.8	15.3		14.8	15.0			15.0	15.0 15.5	15.0 15.5 16.1	15.0 15.5 16.1 16.3	15.0 15.5 16.1 16.3 15.0	15.0 15.5 16.1 16.3 16.3 15.0 16.3	15.0 15.5 16.1 16.1 16.3 16.3 15.0 16.3 17.2	15.0 15.5 16.1 16.1 16.3 15.0 16.3 17.2 17.5	15.0 15.5 16.1 16.1 16.3 16.3 16.3 17.2 17.5	15.0 15.5 16.1 16.1 16.3 16.3 17.2 17.2 17.5 17.5	15.0 15.5 15.6 16.1 16.3 16.3 17.2 17.5 17.5 18.9	15.0 15.5 16.1 16.3 16.3 16.3 17.2 17.5 17.5 18.9 18.9	15.0 15.5 15.6 16.1 16.3 16.3 16.3 16.3 17.2 17.5 17.5 17.5 18.9 18.9 18.9 20.3	15.0 15.5 15.1 16.1 16.3 16.3 15.0 15.0 17.2 17.5 17.5 17.5 18.9 18.9 20.3 20.1	15.0 15.5 16.1 16.3 16.3 16.3 16.3 17.5 17.5 18.9 18.9 20.3 20.1 17.4	15.0 15.5 15.5 16.1 16.3 16.3 16.3 16.3 17.5 17.5 17.5 17.5 18.9 20.3 20.3 20.3 20.1 17.4 17.4	15.0 15.5 15.1 16.1 16.3 16.3 16.3 17.2 17.5 18.9 18.9 20.1 17.4 17.4 17.0 17.0	15.0 15.5 16.1 16.3 16.3 16.3 16.3 16.3 17.2 17.5 17.5 18.9 18.9 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.0 17.0
Easting ² (feet) 1 768 446		1 768 446	1,200,110	1,268,620	1,269,210	1,269,605			1,269,595	1,269,595 1,269,738	1,269,595 1,269,738 1,269,739	1,269,595 1,269,738 1,269,739 1,269,759	1,269,595 1,269,738 1,269,739 1,269,759 1,269,773	1,269,595 1,269,738 1,269,739 1,269,739 1,269,773 1,269,773	1,269,595 1,269,738 1,269,739 1,269,779 1,269,773 1,269,773 1,270,232 1,270,515	1,269,595 1,269,738 1,269,739 1,269,759 1,269,773 1,269,773 1,269,773 1,270,515 1,270,515 1,271,042	1,269,595 1,269,738 1,269,739 1,269,759 1,269,773 1,269,773 1,269,773 1,270,515 1,270,515 1,271,042	1,269,595 1,269,738 1,269,739 1,269,759 1,269,773 1,270,515 1,270,515 1,271,042 1,271,042	1,269,595 1,269,738 1,269,739 1,269,759 1,269,773 1,269,773 1,269,773 1,269,773 1,270,515 1,271,042 1,271,042 1,271,039 1,271,076	1,269,595 1,269,738 1,269,739 1,269,779 1,269,773 1,270,515 1,271,042 1,271,042 1,271,039 1,271,098	1,269,595 1,269,738 1,269,739 1,269,759 1,269,773 1,269,773 1,269,773 1,270,515 1,270,515 1,271,042 1,271,042 1,271,098 1,271,098 1,271,098	1,269,595 1,269,738 1,269,739 1,269,759 1,269,773 1,269,773 1,270,515 1,271,042 1,271,042 1,271,042 1,271,048 1,271,098 1,271,098 1,271,108	1,269,595 1,269,738 1,269,739 1,269,759 1,269,773 1,270,515 1,271,042 1,271,042 1,271,042 1,271,039 1,271,098 1,271,098 1,271,108 1,271,108	$\begin{array}{c} 1,269,595\\ 1,269,738\\ 1,269,739\\ 1,269,739\\ 1,269,773\\ 1,269,773\\ 1,270,515\\ 1,270,515\\ 1,271,042\\ 1,271,042\\ 1,271,039\\ 1,271,098\\ 1,271,098\\ 1,271,108\\ 1,271,108\\ 1,271,125\\ 1,271,125\\ 1,271,285\end{array}$	1,269,595 1,269,738 1,269,739 1,269,759 1,269,773 1,270,232 1,271,042 1,271,042 1,271,048 1,271,098 1,271,098 1,271,098 1,271,108 1,271,125 1,271,125 1,271,148	1,269,595 1,269,738 1,269,739 1,269,759 1,269,773 1,269,773 1,270,515 1,271,042 1,271,042 1,271,039 1,271,039 1,271,038 1,271,108 1,271,108 1,271,108 1,271,1285 1,271,1285 1,271,1285 1,271,1285 1,271,162
Northing ² (feet)	Northing ² (feet)		212,566	213,100	213,128	213,122			213,122	213,122 213,682	213,122 213,682 214,078	213,122 213,682 214,078 214,612	213,122 213,682 214,078 214,612 215,044	213,122 213,682 214,078 214,612 214,612 215,044 215,456	213,122 213,682 214,078 214,612 215,044 215,456 215,769	213,122 213,682 214,078 214,612 215,044 215,044 215,769 215,398	213,122 213,682 214,078 214,612 215,044 215,446 215,456 215,769 215,398	213,122 213,682 214,078 214,612 215,044 215,456 215,456 215,398 215,398 215,392	213,122 213,682 214,078 214,612 215,044 215,446 215,346 215,398 215,398 215,392 215,392 215,343	213,122 213,682 214,078 214,078 215,044 215,044 215,346 215,348 215,398 215,398 215,343 215,943 215,943	213,122 213,682 214,078 214,612 215,044 215,456 215,456 215,398 215,398 215,398 215,398 215,943 215,943 216,468 216,998	213,122 213,682 214,078 214,612 215,044 215,469 215,398 215,398 215,398 215,398 215,392 215,943 215,943 215,943 215,943 215,948	213,122 213,682 214,078 214,078 215,044 215,044 215,398 215,398 215,398 215,398 215,398 215,943 215,943 216,998 216,998 216,998 217,481 218,011	213,122 213,682 214,078 214,612 215,044 215,456 215,456 215,398 215,398 215,398 215,398 215,943 215,943 215,943 216,468 215,943 216,468 215,943 216,468 215,943 216,468 215,943 216,468 215,943 2215,943 2215,968 2215,968 2215,968 2215,968 2215,968 2215,011 2215,011 2215,011 2215,011 2215,011 2215,011 2215,012,	213,122 213,682 214,078 214,612 215,044 215,044 215,398 215,392 215,392 215,943 215,943 216,998 216,998 216,998 217,481 215,392 215,392 215,393 216,393 217,481 217,481 217,483 217,48	213,122 213,682 214,078 214,078 214,612 215,044 215,456 215,398 215,398 215,398 215,398 215,398 215,398 215,398 215,398 215,943 215,944 215,756 215,944 215,756 215,944 215,756 215,943 215,945 215,94
Total Hole Depth	an a' aine a		210.2	225.5	269.0	227.0			280.8	280.8 244.0	280.8 244.0 241.0	280.8 244.0 241.0 226.0	280.8 244.0 241.0 226.0 246.5	280.8 284.0 241.0 226.0 234.0 234.0	280.8 284.0 241.0 226.0 226.0 2246.5 234.0 249.0	280.8 244.0 241.0 241.0 226.0 246.5 234.0 234.0 234.0 249.0 141.5	280.8 284.0 244.0 241.0 226.0 2246.5 234.0 234.0 234.0 141.5	280.8 284.0 241.0 226.0 226.0 2246.5 234.0 234.0 141.5 141.5 216.5	280.8 280.8 244.0 241.0 226.0 2246.0 234.0 249.0 141.5 141.5 216.5 206.4	280.8 280.8 244.0 241.0 226.0 2246.5 234.0 141.5 141.5 216.5 216.5 216.5 216.5 216.5	280.8 280.8 280.8 241.0 226.0 2246.5 234.0 234.0 246.5 234.0 141.5 141.5 216.5 206.4 176.5 161.5	280.8 280.8 244.0 241.0 226.0 2246.5 234.0 234.0 141.5 141.5 141.5 206.4 176.5 136.5 136.5	280.8 280.8 280.8 244.0 2240.0 246.5 234.0 249.0 141.5 141.5 216.5 216.5 216.5 216.5 176.5 176.5 176.5 176.5 176.5 176.5 176.5 217.5 216.5 210.5 216.5	280.8 280.8 280.8 241.0 226.0 226.0 2246.5 234.0 246.5 234.0 141.5 141.5 141.5 216.5 206.4 176.5 161.5 161.5 161.5 161.5 110.3 110.3	280.8 280.8 280.8 244.0 241.0 226.0 249.0 141.5 141.5 141.5 141.5 141.5 161.5 136.5 136.5 136.5 136.5 136.5 136.5 136.5 110.3 106.5	280.8 280.8 280.8 244.0 2240.0 246.5 234.0 234.0 234.0 141.5 234.0 249.0 141.5 216.5 216.5 216.5 166.4 176.5 161.5 126.5 110.3 110.3 110.3 118.0
:		Exploration No ^{.1}	SD-101	SD-102	SD-103	SD-104			SD-104A	SD-104A SD-105	SD-104A SD-105 SD-106	SD-104A SD-105 SD-106 SD-107	SD-104A SD-105 SD-106 SD-106 SD-107 SD-108	SD-104A SD-105 SD-105 SD-106 SD-107 SD-108 SD-109	SD-104A SD-105 SD-106 SD-107 SD-107 SD-109 SD-110 SD-110	SD-104A SD-105 SD-105 SD-106 SD-107 SD-108 SD-108 SD-110 SD-111	SD-104A SD-1045 SD-105 SD-106 SD-107 SD-108 SD-109 SD-110 SD-111	SD-104A SD-105 SD-105 SD-107 SD-107 SD-108 SD-109 SD-110 SD-111 SD-111	SD-104A SD-105 SD-105 SD-107 SD-107 SD-108 SD-108 SD-110 SD-111 SD-112 SD-112	SD-104A SD-105 SD-105 SD-106 SD-107 SD-109 SD-109 SD-110 SD-111 SD-112 SD-113	SD-104A SD-105 SD-105 SD-107 SD-107 SD-108 SD-109 SD-110 SD-111 SD-1112 SD-113 SD-114 SD-114	SD-104A SD-105 SD-106 SD-107 SD-107 SD-108 SD-108 SD-110 SD-111 SD-112 SD-112 SD-115 SD-115	SD-104A SD-105 SD-105 SD-106 SD-107 SD-109 SD-109 SD-110 SD-111 SD-112 SD-112 SD-115 SD-115 SD-115	SD-104A SD-105 SD-105 SD-107 SD-107 SD-107 SD-109 SD-109 SD-111 SD-111 SD-112 SD-114 SD-115 SD-116 SD-116 SD-116	SD-104A SD-105 SD-105 SD-106 SD-107 SD-108 SD-108 SD-108 SD-110 SD-111 SD-112 SD-112 SD-115 SD-115 SD-115 SD-115 SD-115 SD-115 SD-116 SD-116 SD-117 SD-117 SD-117	SD-104A SD-105 SD-105 SD-107 SD-107 SD-108 SD-109 SD-109 SD-110 SD-111 SD-112 SD-112 SD-115 SD-115 SD-115 SD-116 SD-116 SD-116 SD-116 SD-117 SD-116

21-1-09910-091

12/22/2003-New Appendix A Tables.xls-SODO-MAN

Page 1 of 2 (see page 2 for notes)

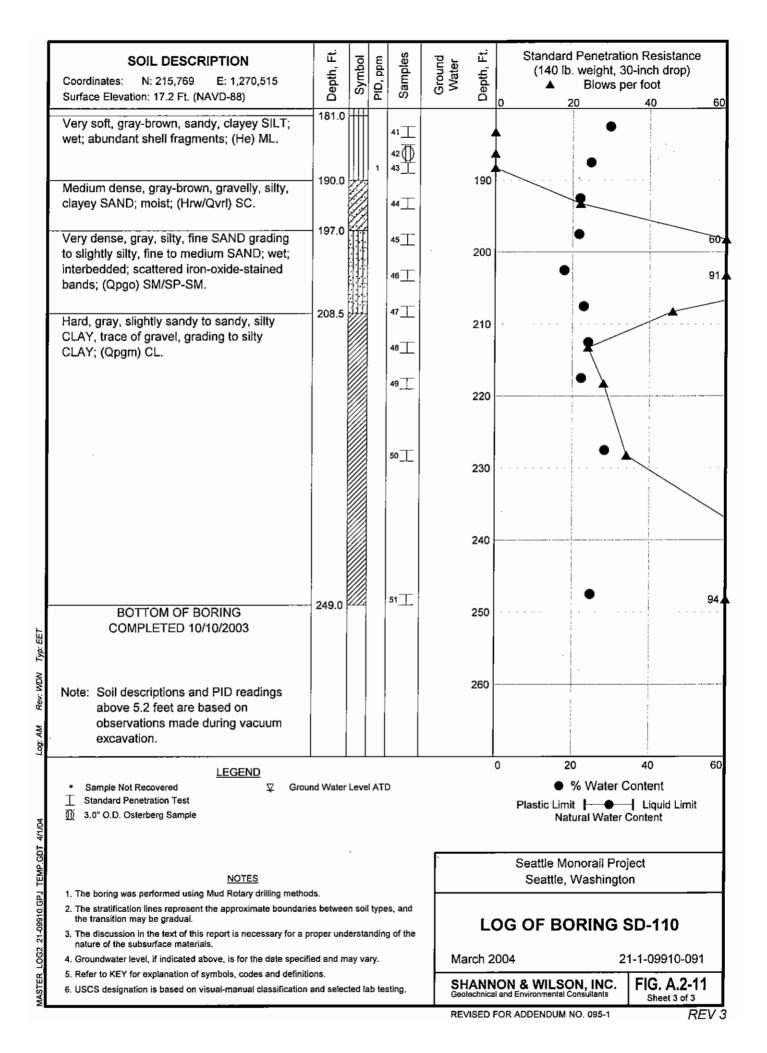
TABLE A.2-1 SUMMARY OF FIELD EXPLORATIONS SODO SEGMENT

	Obtained Conne S			CPT Testing Only	CPT Testing Only	CPT Testing Only - Hole	moved due to obstruction	(see SD-203A)	CPT Testing Only		Hole moved due to difficulty	drilling	(see SD-206A)		
	Terformed Performed		x x							X					1 14
esting	Downhole Seismic Tests Performed Pressuremeter Tests														4
Special Testing	Energy Tests Energy Tests														2
•	Vibrating Wire Piezometer Installed														5
	Monitoring Well Installed														5
	Drilling Company ⁴	HD	CTH	NCE	NCE	NCE			NCE	GE	PR			GE	TOTALS >
Drilling		15-Sep-03	22-Sep-03	30-Oct-03	30-Oct-03	28-Oct-03			31-Oct-03	22-Oct-03	12-Nov-03			20-Nov-03	
Date of Drilling	Start	11-Sep-03	16-Sep-03	30-Oct-03	30-Oct-03	28-Oct-03			31-Oct-03	21-Oct-03	4-Nov-03			20-Nov-03	
	Surface Elevation ³ (feet)	30.3	18.0	14.5	15.6	16.9			16.9	16.5	33.9			33.9	
	Easting ² (feet)	1,270,999	1,270,655	1,268,847	1,269,725	1,270,874			1,270,874	1,271,139	1,271,127			1,271,127	
	Northing ² (feet)	222,539	215,931	213,137	213,383	216,138			216,138	221,156	222,256			222,255	< TOTALS
	¹ Total Hole Depth (feet)	108.5	234.0	211.5	242.2	98.8			169.7	130.3	106.0			135.5	5,706
	Exploration Total Hole No ^{.1} Depth (feet)	SD-121	SD-122	SD-201	SD-202	SD-203			SD-203A	SD-205	SD-206			SD-206A	31

NOTES:

- Borings not surveyed are indicated by an asterisk. Locations and elevations were estimated from topographic maps based on approximate field measures.
- Northings and Eastings were surveyed by Duane Hartman & Associates and are referenced to the NAD83 horizontal datum except as noted by asterisk next to exploration number. ä
 - Surface elevations were surveyed by Duane Hartman & Associates and are referenced to the NAVD88 vertical datum, except as noted by asterisk next to exploration number. ÷.
- GE=Geotech Explorations, Inc.; PR=PacRim Geotechnical; HD=Holocene Drilling, Inc. NCE= Northwest Cone exploration 4

GE used a rope and cathead hammer. PR and HD used an Automatic Trip Hammer. NCE used a cone penetration test method to perform the probe.


SOIL DESCRIPTION Coordinates: N: 215,456 E: 1,270,232	Depth, Ft.	Symbol	PID, ppm	Samples	Ground Water	Depth, Ft.	Standard Penetration Resistance (140 lb. weight, 30-inch drop) ▲ Blows per foot
Surface Elevation: 16.3 Ft. (NAVD-88)	ے	S	≣∣	ŝ	0-	De	0 20 40 60
CONCRETE Dense, brown, silty SAND, trace of gravel; moist; scattered asphalt and concrete, <u>scattered sandy silt clasts; (Hf) SM.</u> Loose to medium dense, brown, slightly	- 0.7 - 3.7 - 7.0		0 0 0 0			10	▲
silty to silty, gravelly SAND; moist; scattered to abundant cinders; scattered iron-oxide staining below 6 feet; (Hf) SM/SP-SM.	12.0		0 0.1 0			20	1/18"
Very loose, dark gray-brown, silty, fine SAND; wet; abundant organics, scattered cinders; (Hf) SM. Very loose to loose, dark gray-brown,	22.0		0 0 0.1	6 <u> </u>		20	
slightly silty to silty, fine to medium SAND; wet; abundant seams of fine sandy silt, scattered shell fragments; (Hf/Ha)			0.1 0.1	8 <u> </u>		30	•
SM/SP-SM. Medium dense, dark gray, slightly silty, fine to medium SAND; wet; scattered shell fragments, trace of gravel locally; (Ha)				10		40	
SP-SM/SP. Loose, dark gray-brown, clean to slightly silty, fine to medium SAND; wet; scattered shell fragments and wood debris; (Ha)	45.0			11 <u></u> 12 <u></u>		50	•
SP-SM/SP. Medium dense, dark gray, silty, fine to medium SAND; wet; scattered to abundant	56.0			13 <u> </u>		60	
Clayey seams; (Ha) SM. Interbedded, very loose, gray, silty, fine SAND to very soft, slightly clayey, fine sandy SILT; wet; (He/Ha) SM/ML.	61.0		0	15 <u> </u>			
Medium dense, dark gray, fine to medium SAND, trace of silt; wet; scattered to abundant shell fragments, locally abundant wood debris; (Ha) SP.			0	18		70	
Interbedded, very loose, dark gray-brown, slightly clayey, silty, fine SAND and silty,	82.0		0	19 <u> </u>		80	
fine SAND; wet; scattered layers of sandy, CONTINUED NEXT SHEET	88.0			21(<u>)</u> 22			
	ometer S onite-Ce onite Ch onite Gr	ement G nips/Pel out	Grout lets	t	ter		0 20 40 60 • % Water Content Plastic Limit • Liquid Limit Natural Water Content
NOTES	ind Wate	er leve	I IR V	veil			Seattle Monorail Project Seattle, Washington
 The boring was performed using drilling methods. The stratification lines represent the approximate bounda the transition may be gradual. The discussion in the text of this report is necessary for a nature of the subsurface materials. Groundwater level, if indicated above, is for the date spe Refer to KEY for explanation of symbols, codes and define USCS designation is based on visual-manual classification 						L	OG OF BORING SD-109
 Groundwater level, if indicated above, is for the date spe Refer to KEY for explanation of symbols, codes and define USCS designation is based on visual-manual classification 	nitions.						Deer 2003 21-1-09910-091 NON & WILSON, INC. FIG. A.2-10 al and Environmental Consultants Sheet 1 of 3

SOIL DESCRIPTION Coordinates: N: 215,456 E: 1,270,232	Jepth, Ft.	Symbol	PID, ppm	Samples	Ground Water	Depth, Ft.	Standard Penetration Resistance (140 lb. weight, 30-inch drop) ▲ Blows per foot
Surface Elevation: 16.3 Ft. (NAVD-88)	םّ	တ	₫	ů	0-	ď	0 20 40 60
Clayey silt; (Ha/He) SM/ML. Medium dense, dark gray-brown, slightly silty to silty, fine to medium SAND; wet; abundant wood debris; (Ha) SM/SP-SM. Medium dense, dark gray-brown, slightly silty, fine to medium SAND; wet; (Ha/He) SP-SM.	96.0 101.0		0 0 0	23 <u> </u>		100	
Loose, gray-brown, silty, fine SAND, trace of clay to fine sandy SILT; wet; scattered organics; (Ha/He) SM/ML.	111.0		0	26		110	
Medium dense, dark gray-brown, silty, fine SAND; wet; scattered seams with abundant wood debris, locally slightly silty, slightly clayey at bottom; (Ha) SM.			0	27 <u> </u>		120	•
			0	29 <u>⊤</u> 30⊤		.20	
Soft, dark gray-brown, fine sandy, clayey SILT; wet; scattered shell fragments; (He) ML.	130.0 136.0		0.2	30⊥ 31⊥		130	
Soft, dark gray, clayey SILT, trace of fine sand; wet; scattered seams of silty clay, scattered to abundant shell fragments; (He) CL.	136.0		0.2 0	32 <u>⊤</u> 33 <u>⊤</u>		140	
Medium dense, dark gray-brown, silty, fine	151.0		0 0 0	34 35⊥ 36⊤		150	
SAND to slightly clayey, silty, fine SAND; wet; abundant seams of fine sandy, clayey silt; (Ha/He) SM/ML.	162.0		0	37		160	
Soft to stiff, gray-brown, fine sandy, clayey	170.0		0	38⊥ 39⊥		170	
Medium dense, dark gray-brown, silty, fine to medium SAND; wet; scattered shells, scattered clayey seams; (Ha) SP-SM.			0	40 <u> </u>			
CONTINUED NEXT SHEET							0 20 40 60
G Grab Sample Sento I Standard Penetration Test Standard Bento	ometer S onite-Ce onite Chi onite Gro nd Wate	ment ips/Pr out	Gro ellets	6	ilter		● % Water Content Plastic Limit I Liquid Limit Natural Water Content
 NOTES The boring was performed using drilling methods. 							Seattle Monorail Project Seattle, Washington
 The stratification lines represent the approximate bounda the transition may be gradual. The discussion in the text of this report is necessary for a nature of the subsurface materials. 	proper	unde	rstar	nding of th		L	OG OF BORING SD-109
4. Groundwater level, if indicated above, is for the date spect 5. Refer to KEY for explanation of symbols, codes and defin 6. USCS designation is based on visual-manual classification	itions.						ber 2003 21-1-09910-091 NON & WILSON, INC. FIG. A.2-10 Al and Environmental Consultants Sheet 2 of 3

SOIL DESCRIPTION Coordinates: N: 215,456 E: 1,270,232 Surface Elevation: 16.3 Ft. (NAVD-88)	Depth, Ft.	Symbol	PID, ppm	Samples	Ground Water	Depth, Ft.	Standard Penetration Resistance (140 lb. weight, 30-inch drop) ▲ Blows per foot
Stiff to soft, dark gray, silty CLAY; wet; scattered shell fragments; (He) CL.	180.0		0 0	42 <u>⊤</u> 43 <u>⊤</u>		190	
			0	44		150	
Loose, green-gray, slightly clayey, silty, fine to medium SAND, trace of gravel; wet; abundant shells; (Hrw) SM.	- 200.0		0	45 <u></u> 46 <u></u>		200	•
Soft, gray, silty CLAY; moist; bedded; (Qvrl) CH/CL. Very dense, gray, silty, fine SAND; wet;	- 211.0		0	47		210	
(Qpgo/Qva) SM. Very dense, gray, slightly silty, fine to medium SAND to slightly silty, gravelly SAND; wet; (Qpgo/Qva) SP-SM.	215.0		0	48 <u> </u>		220	• 50/6". • 50/5".
	220.0		0	50— 51—		230	● 50/3", 50/6",
Hard, gray, silty CLAY, trace of gravel; wet; (Qpgl/Qvgl) CH/CL. BOTTOM OF BORING COMPLETED 9/19/2003	- 230.0 - 234.0		o	52		230	R
Note: Soil descriptions and PID readings above 7.0 feet are based on observations made during vacuum excavation.						240	
						250	
						260	
Grab Sample Image: Standard Penetration Test Image: Standard Penetration Test Image: Standard Penetration Test	tonite-Ce tonite Ch tonite Gr	ement hips/P out	Gro ellet:	5	lter		0 20 40 60 ● % Water Content Plastic Limit
Grou NOTES	und Wate	er Lev	ei in	vven			Seattle Monorail Project Seattle, Washington
 The boring was performed using drilling methods. The stratification lines represent the approximate bounda the transition may be gradual. The discussion in the text of this report is necessary for a nature of the subsurface materials. 						L	OG OF BORING SD-109
 3.0" O.D. Osterberg Sample 2.12 Bent 2.13 Bent 2.14 Ground 2.15 The boring was performed using drilling methods. 2. The stratification lines represent the approximate boundate the transition may be gradual. 3. The discussion in the text of this report is necessary for a nature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date spector is necessary for a nature to KEY for explanation of symbols, codes and define 6. USCS designation is based on visual-manual classification 	nitions.						Der 2003 21-1-09910-091 NON & WILSON, INC. FIG. A.2-10 Sheet 3 of 3

SOIL DESCRIPTION Coordinates: N: 215,769 E: 1,270,515	Jepth, Ft.	Symbol	PID, ppm	Samples	Ground Water	Depth, Ft.	Standard Penetration Resistance (140 lb. weight, 30-inch drop)
Surface Elevation: 17.2 Ft, (NAVD-88)	Dep	Ś		Sal	<u>9</u> <	Der	▲ Blows per foot 0 20 40
Very loose, silty, sandy GRAVEL to sandy, clayey SILT; moist; abundant brick and concrete debris; (Hf) GM/ML.			0	1			
Soft, dark brown, slightly clayey, sandy SILT; wet; layers of silty, sand; (Hf) ML/SM. Very soft, gray, clayey SILT to loose, dark gray, silty, fine to medium SAND; wet;	- 7.0		0	2 <u>⊤</u> 3 <u>⊤</u> 4 <u>⊤</u>	אי פעוווגע פעיזעע	10	
Scattered gravel and wood fragments; (Hf) SM. Very soft, gray, silty CLAY; wet; (He) CH. Loose, dark gray-brown, silty, fine SAND;	- 15.0 - 18.0 - 20.0		0 0 9	5 6 7 7 8 ⊥		20	
wet; seams of sandy, clayey silt; (He) ML. / Loose to medium dense, dark gray-brown, slightly silty, fine to medium SAND; wet; (Ha) SP-SM.			0	9 <u> </u>		30	•
Loose to very loose, dark gray-brown, silty,	40.0		0.5	19 11 11		40	2
fine to medium SAND; wet; abundant wood fragments and fine organics; fine sandy silt at bottom; (Ha/He) SM.			8 14	12 <u> </u>			
Medium dense, dark gray-brown, slightly silty, fine to medium SAND; wet; scattered to abundant wood decreasing with depth; (Ha) SP-SM.	51.0		10	14 <u> </u>		50	
	66.0		1.4	16		60	
Loose to medium dense, dark gray-brown, interbedded, slightly silty, fine to medium SAND and silty, fine SAND; wet; scattered seams of fine sandy silt, scattered to			1.3 1	17 <u> </u>		70	
abundant wood fragments; (Ha) SM/SP-SM.			0.8	19 <u> </u>		80	
CONTINUED NEXT SHEET			1	21]			
★ Sample Not Recovered 又 Grou ⊥ Standard Penetration Test ① 3.0" O.D. Osterberg Sample	nd Wate	r Leve	ΙΑΤ)			0 20 40 60 • % Water Content Plastic Limit Liquid Limit Natural Water Content
NOTES							Seattle Monorail Project Seattle, Washington
 The boring was performed using Mud Rotary drilling method The stratification lines represent the approximate boundaries the transition may be gradual. The discussion in the text of this report is necessary for a p 	es betwe					L	OG OF BORING SD-110
nature of the subsurface materials.				y or the	B.Z	roh O	004 04 4 00040 004
Groundwater level, if indicated above, is for the date specific	eo ano r ons,	nay va	u y.			rch 2	2004 21-1-09910-091

SOIL DESCRIPTION Coordinates: N: 215,769 E: 1,270,515 Surface Elevation: 17.2 Ft. (NAVD-88)	Depth, Ft.	Symbol	PID, ppm	Samples	Ground Water	Depth, Ft.	Standard Penetration Resistance (140 lb. weight, 30-inch drop) ▲ Blows per foot
Loose, interbedded slightly silty SAND and silty SAND; (Ha) SM/SP-SM (cont.)				22			
				23		100	
				24			
Soft, gray-brown, slightly clayey, fine sandy SILT; wet; abundant organic fragments;	110.0			25 26		110	
(He) ML. Medium dense, dark gray-brown, slightly silty, fine to medium SAND; wet; (Ha)	115.0			27		120	•
SP-SM.				28		120	
Loose, gray-brown, silty, fine SAND; wet;	- 131.0			29		130	•
abundant organics and wood debris; (Ha/He) SM. Very soft, dark gray, clayey SILT to silty	135.0			30 <u> </u>			
CLAY; wet; scattered to abundant shell fragments; (He) ML/CL.				32		140	
			12	-		150	• ·
			12	34 (35			
h			31	36 *		160	
Medium dense, dark gray-brown, silty, fine to medium SAND; wet; abundant wood	- 166.0		1	38			
debris; (Ha) SM. Very soft, gray-brown, clayey SILT, trace of	171.0		2	39		170	
sand; wet; (He) ML.			0.9	40			
∑ Standard Penetration Test ① 3.0" O.D. Osterberg Sample	und Water	Leve	el ATI	D		(0 20 40 60 • % Water Content Plastic Limit I Liquid Limit Natural Water Content
 NOTES 1. The boring was performed using Mud Rotary drilling method 2. The stratification lines represent the approximate boundari the transition may be gradual. 3. The discussion in the text of this report is necessary for a prature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date special 5. Refer to KEY for explanation of symbols, codes and definition 6. USCS designation is based on visual-manual classification 							Seattle Monorail Project Seattle, Washington
 The boring was performed using Mud Rotary drilling methology The stratification lines represent the approximate boundaries the transition may be gradual. The discussion in the text of this report is necessary for a point of the transition may be approximate to the strategies. 	es betwee					LC	DG OF BORING SD-110
nature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specie		ay va	ary.		Ma	rch 20	004 21-1-09910-091
 5. Refer to KEY for explanation of symbols, codes and definit 6. USCS designation is based on visual-manual classification 					сu	ANIN	ON & WILSON, INC. FIG. A.2-11

SOIL DESCRIPTION	Depth, Ft.	Symbol	PID, ppm	Samples	Ground Water	Depth, Ft.	(140 lb. weight	ation Resistance t, 30-inch drop)
Coordinates: N: 215,943 E: 1,271,076 Surface Elevation: 18.9 Ft. (NAVD-88)	bep	Syl	ē,	San	9≥	Dep		s per foot
ASPHALT	0.2						0 20	40 60
Dense, dark brown, silty, sandy GRAVEL;	2.0							
moist; crushed rock, brick, and concrete								
rubble; (Hf) GM.							· · · · · · · · · · · · · · · · · · ·	
Loose to medium dense, dark and light			0	1				
	40.0		0	2		10		
gray, silty, gravelly SAND; wet; asphalt,	12.0	$[\Pi]$	0	3				
brick, wood and concrete fragments; (Hf)	14.5		n	4 <u> </u>			/	(
SM. Loose, dark gray, slightly silty, fine SAND;			Ŭ			1		
			0	5 6		20		· · · · · · · · · · · · · · · · · · ·
wet; massive scattered organic fragments;			0					
(Ha) SP-SM. Very soft, dark gray and gray, silty CLAY,	23.5							
			0	7			: : : : `\ : : : : : : !	
trace of fine sand; wet; bedded to laminated								
with scattered organic-rich seams; (HI/He)			0	8		30		•
CH/CL.			Ŭ					
Medium dense and dense, dark gray,								
slightly silty, fine SAND; wet; massive to			0	9				:::) 🔁 🗄 :::::::::::::::::::::::::::::::::
bedded, scattered organic-rich seams,							· · · · · · · · · · · · ·	/
scattered shell fragments; (Ha) SP-SM.			0	10		40		
	43.0							
Very loose to loose, dark gray, silty, fine			0	11 1				• • • • • • • • • • • • • • • • • • • •
SAND to fine sandy SILT; wet; massive to			5					
bedded, abundant organic fragments,						50		
scattered shell fragments; (He) SM/ML.			0	12		Ĩ		
Medium dense, dark gray, slightly silty, fine	53.0							
SAND; wet; massive, scattered organic			0	13				
fragments; (Ha) SP-SM.								
			0	14		60		•
	63.0		-					
Medium dense to loose, dark gray, fine	00.0							
sandy SILT; wet; massive to bedded,			0	15			🥂	
abundant organic-rich seams; (He) ML.								
			0	16		70		
Medium dense denk grou silty fine CAND	73.0	<u>.</u>						
Medium dense, dark gray, silty, fine SAND;			0	17				
wet; massive, abundant organic fragments;			-	··				
(He) SM.			_			80	· · · · · · · · · · · · · · · · · · ·	
			0	18				· · · · · · · · · · · · · · · · · · ·
			0	19			· : : : : : : : ▲ : : : : : : •	P::::: :::::::::::::
	88.0							
CONTINUED NEXT SHEET						I	0 20	40 60
LEGEND								
 ★ Sample Not Recovered ☐ Standard Penetration Test 								er Content
\square 3.0" O.D. Osterberg Sample							Plastic Limit	
							Natural Wa	
							Seattle Monorail	Project
<u>NOTES</u>							Seattle, Washin	-
1. The boring was performed using Mud Rotary drilling met	hods.				┣──			<u> </u>
2. The stratification lines represent the approximate bounda	aries bet	ween	soil t	ypes, and				
the transition may be gradual. 3. The discussion in the text of this report is necessary for a			- 4 -	-11		L	OG OF BORIN	G SD-112
3 The discussion in the text of this report is necessary for a	a proper	under	stan	aing of the				
nature of the subsurface materials					1			
nature of the subsurface materials.	cified an	id mav	van	v .	Dec	emh	per 2003	21-1-09910-091
 a. Groundwater level, if indicated above, is for the date spe Refer to KEY for explanation of symbols, codes and definition 		id may	vaņ	y .			Der 2003	21-1-09910-091

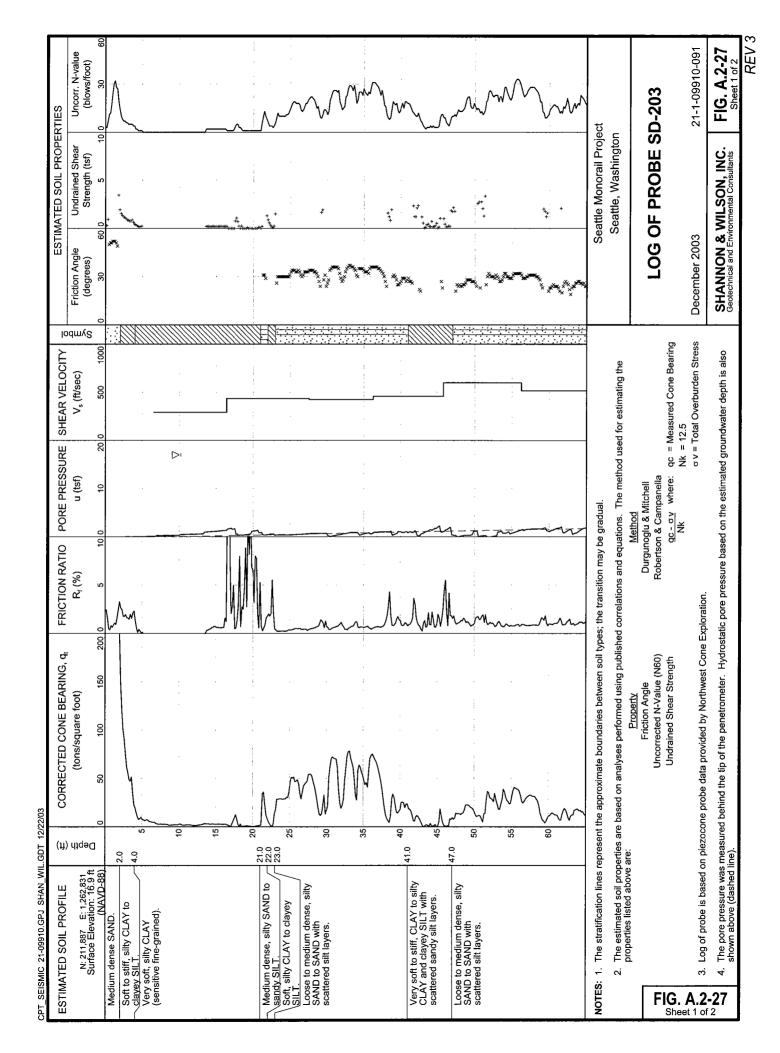
,

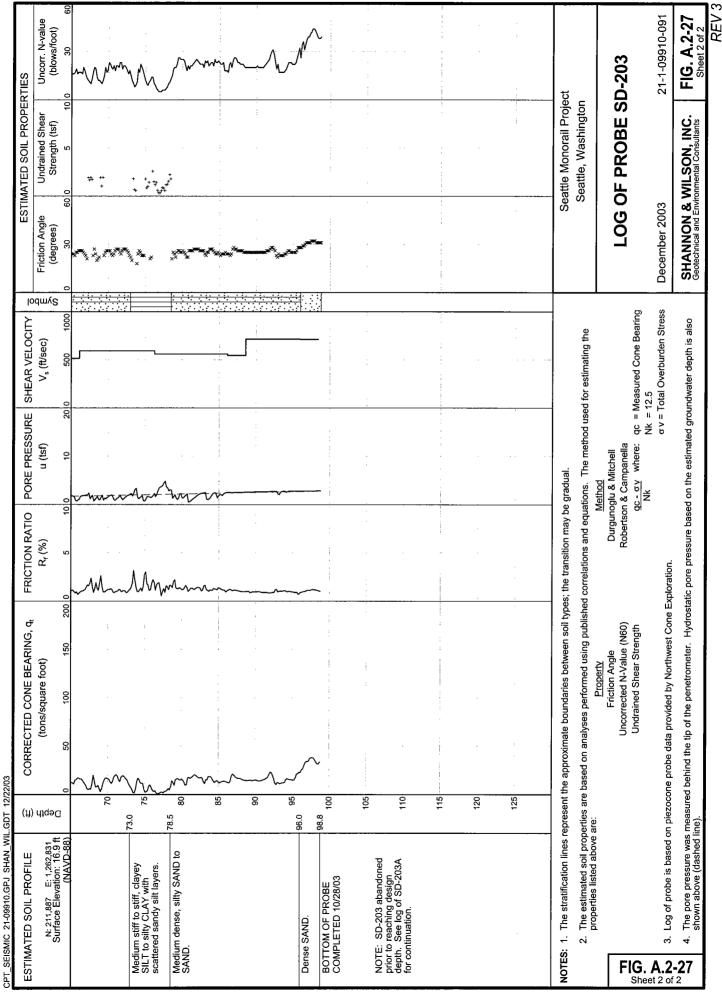
SOIL DESCRIPTION Coordinates: N: 215,943 E: 1,271,076	Depth, Ft.	Symbol	PID, ppm	Samples	Ground Water	Depth, Ft.	Standard Penetration Resistance (140 lb. weight, 30-inch drop) ▲ Blows per foot
Surface Elevation: 18.9 Ft. (NAVD-88)	ā				0	ŏ	0 20 40 60
Loose, dark gray, fine sandy SILT; wet; massive, abundant organic fragments, scattered shell fragments; (He) ML. Medium dense, dark gray, silty, fine SAND;	93.0		0	20 21	Drilling	1	
wet; massive to bedded abundant organic fragments, slightly silty at top; (He) SM.			o	22	rved During [100	•
			0	23 <u></u> 24 <u></u>	None Obse	110	
Dense to medium dense, slightly silty, fine SAND; wet; massive, scattered pumice	- 113.0		o	25			
fragments, grades to silty, fine sand at bottom; (Ha) SP-SM.			o	26		120	•
Medium dense, dark gray, silty, fine SAND	128.0		0	27		400	
to fine sandy SILT; wet; massive, abundant very fine organic fragments; (He) ML/SM.			0	28 <u> </u>		130	
Medium stiff to very soft, dark olive-gray, clayey SILT; moist; massive, abundant shell fragments; (He) ML.	138.0		0000	$30 \pm 31 \oplus 32 \pm 32 \pm 32 \oplus 32 \pm 32 \oplus 32 \oplus 32 \oplus 32$		140	
	- 153.0		0	33		150	•
Medium dense, gray, slightly gravelly to gravelly, silty SAND; wet; locally trace of clay, massive, abundant shell debris and wood fragments; (Hb) SM.			0 0	34 <u></u> 35 <u></u>		160	
Very dense, gray, slightly silty SAND grading to silty, gravelly SAND; moist; massive, scattered silt pockets at bottom;	- 164.0		0	36====		170	50/6"
(Qpgo/Qva) SP-SM/SM.	- 176.0		0	37===		170	50/5"
Dense, gray, silty, sandy GRAVEL, trace of CONTINUED NEXT SHEET	170.0						·····
LEGEND ★ Sample Not Recovered ↓ Standard Penetration Test ↓ 3.0" O.D. Osterberg Sample						I	0 20 40 60 ● % Water Content Plastic Limit
NOTES	bada						Seattle Monorail Project Seattle, Washington
NOTES 1. The boring was performed using Mud Rotary drilling met 2. The stratification lines represent the approximate bounda the transition may be gradual. 3. The discussion in the text of this report is necessary for a nature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date spe 5. Refer to KEY for explanation of symbols, codes and defi 6. USCS designation is based on visual-manual classification	aries betv					L	OG OF BORING SD-112
 4. Groundwater level, if indicated above, is for the date speech 5. Refer to KEY for explanation of symbols, codes and defi 	nitions.			-			er 2003 21-1-09910-091
6. USCS designation is based on visual-manual classificati	on and se	electe	ed la	o testing.	Geo	technica	I and Environmental Consultants FIG. A.2-14 Sheet 2 of 3

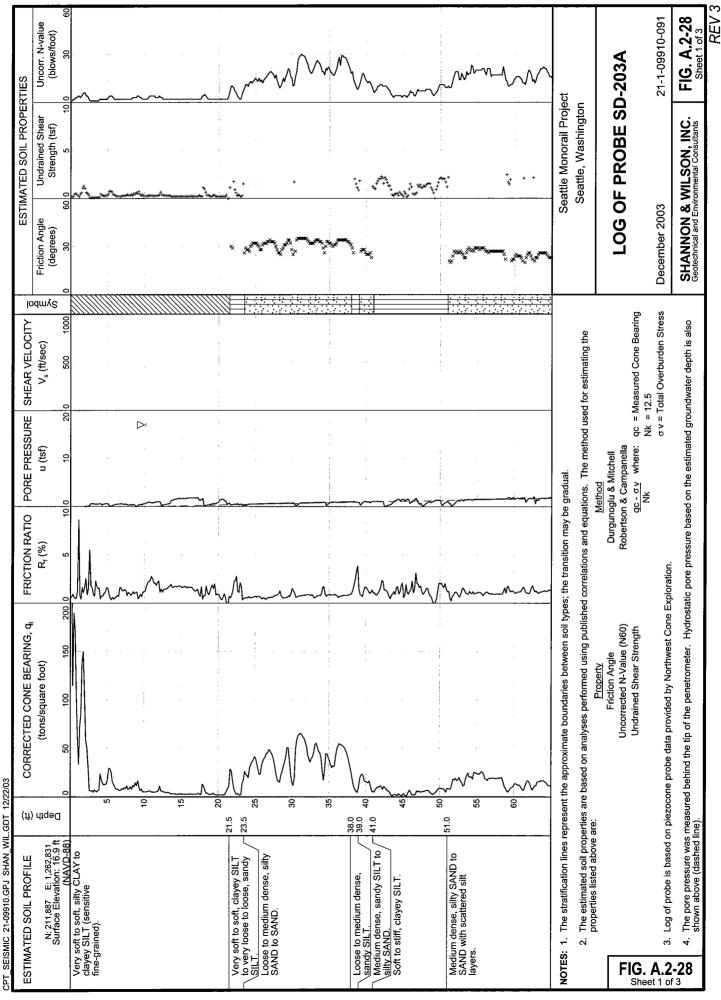
SOIL DESCRIPTION Coordinates: N: 215,943 E: 1,271,076	Jepth, Ft.	Symbol	PID, ppm	Samples	Ground Water	Depth, Ft.	Standard Penetration Resistance (140 lb. weight, 30-inch drop)			
Surface Elevation: 18.9 Ft. (NAVD-88)	Dep	S	PID	Sar	₽ <	Dep	A Blows per foot 0 A 20 40			
clay to slightly gravelly and sandy SILT,			Ó	39						
trace of clay; moist; massive; (Qpgm) GM/ML.		H	0	40			••••			
Hard, gray, silty CLAY to clayey SILT;	188.0		U							
moist; locally trace of fine sand at top;			0	41		190	•••••			
massive; (Qpgl) CL/ML.										
			0	42						
			0	43		200	••••••			
			U	⁺ °						
	206.4		0	44工			50/3			
BOTTOM OF BORING COMPLETED 8/20/2003						240				
						210				
Notes: 1. Soil descriptions above 7.0 feet are										
based on observations made during										
vacuum excavation. 2. PID readings during vacuum excavation						220	·····			
were 0 ppm.										
			i							
						230				
						240				
						250				
						260				
LEGEND							0 20 40			
★ Sample Not Recovered → Standard Penetration Test							% Water Content			
$\underline{\square}$ 3.0" O.D. Osterberg Sample							Plastic Limit I Liquid Limit Natural Water Content			
							Seattle Monorail Project			
NOTES	ode						Seattle, Washington			
 The boring was performed using Mud Rotary drilling meth The stratification lines represent the approximate boundar 		ween	soil t	ypes, an	d					
the transition may be gradual.3. The discussion in the text of this report is necessary for a nature of the subsurface materials.						L	OG OF BORING SD-112			
	 Groundwater level, if indicated above, is for the date specified and may vary. 						December 2003 21-1-09910-091			
4. Oroundwater level, it indicated above, is for the date spec										

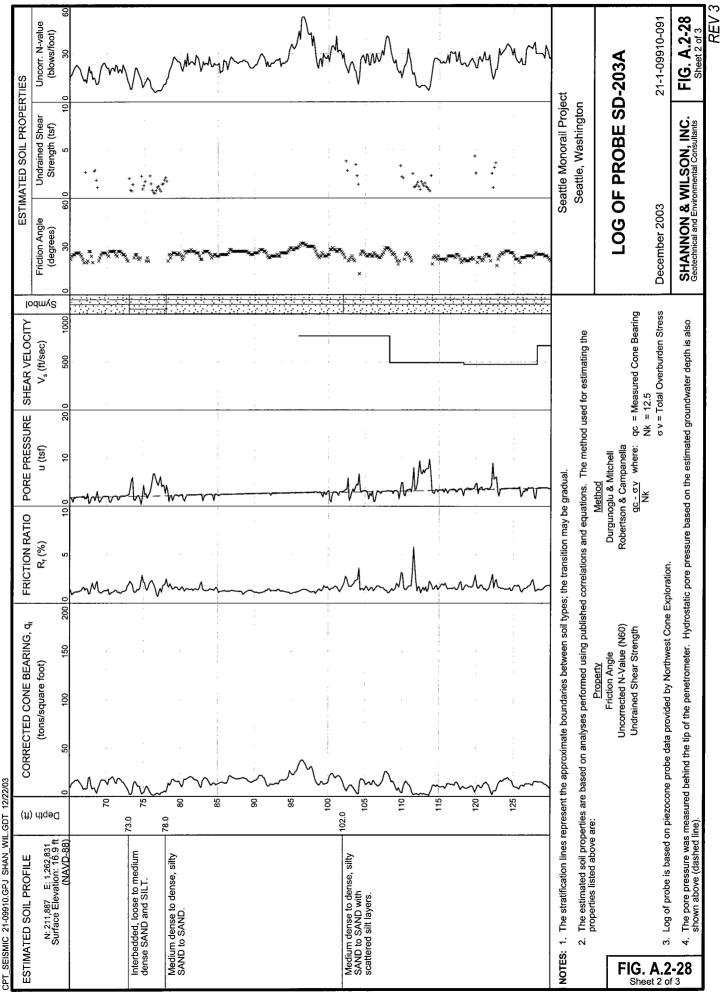
SOIL DESCRIPTION Coordinates: N: 216,468 E: 1,271,098	Depth, Ft.	Symbol	PID, ppm	Samples	Ground Water	Depth, Ft.	Standard Penetration Resistance (140 lb. weight, 30-inch drop) ▲ Blows per foot				
Surface Elevation: 18.9 Ft. (NAVD-88)	Ω		٩	ω υ	1621 1631		0 20 40 6				
Very dense, brown, gravelly, silty SAND; moist to dry; scattered brick debris; (Hf)	2.0										
\SM. / Very loose to medium dense, gray, slightly						5	5				
fine gravelly, silty SAND to slightly clayey,					▼ 目						
silty, sandy GRAVEL; wet; massive,			0	1⊥	S E	40					
scattered organic fragments and wood	10.0		0	2	2/17/2003	፶ 10 ፵	/ . 🔪				
debris; (Hf) SM/GM.	12.0		0	3	° : <u> </u>	▼ 10 ▼ 10 2003/2/2/ 15					
Medium dense, dark gray, slightly silty, gravelly SAND; wet; massive, abundant	14.5		0			₽ 15	5				
organics, abundant shell fragments; (Ha/Hf)			Ū				T				
SP-SM.			0	5			••••••••••••••••••••••••••••••••••••••				
Very soft, gray to dark gray, silty CLAY;	21.0		0	6		20	· · · · · · · · · · · · · · · · · · ·				
wet; bedded, scattered wood fragments,											
scattered organic-rich seams at bottom;			ο	7		25	5				
(Hf/He) CL/CH. Medium dense, dark gray, slightly silty, fine			U								
SAND; wet; massive to bedded, scattered											
to abundant very fine organic fragments,			0	8		30	·····				
scattered seams with trace of silt; (Ha)											
SP-SM.			•			35	· · · · · · · · · · · · · · · · · · ·				
			U	9							
- Seam of fine sandy silt between 40.0 and			0	10		40)				
46.5 feet.											
						45					
			0	11							
			0	12	•	50)				
						55					
			0	13		00	′┃				
			0	14		60)				
							T				
						65					
			0	15		05	′ ♠				
CONTINUED NEXT SHEET				1			0 20 40 6				
* Sample Not Recovered	ometer S	creer	and	l Sand F	ilter		Water Content				
	onite-Ce						Plastic Limit				
	onite Chi	•	ellets	5			Natural Water Content				
	onite Gro nd Wate		ol in								
-	nd wate nd Wate						Seattle Manarail Project				
NOTES							Seattle Monorail Project Seattle, Washington				
1. The boring was performed using Mud Rotary drilling mether	nods.					-					
2. The stratification lines represent the approximate bounda		veen	soil f	types, ar	d						
the transition may be gradual. 3. The discussion in the text of this report is necessary for a	proper	under	stan	ding of t	ne	L	OG OF BORING SD-113				
nature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date spec						ecem	ıber 2003 21-1-09910-091				
5. Refer to KEY for explanation of symbols, codes and defin		y		, ·							
	on and se				1 0	LIΛΝ	INON & WILSON, INC. FIG. A.2-15				

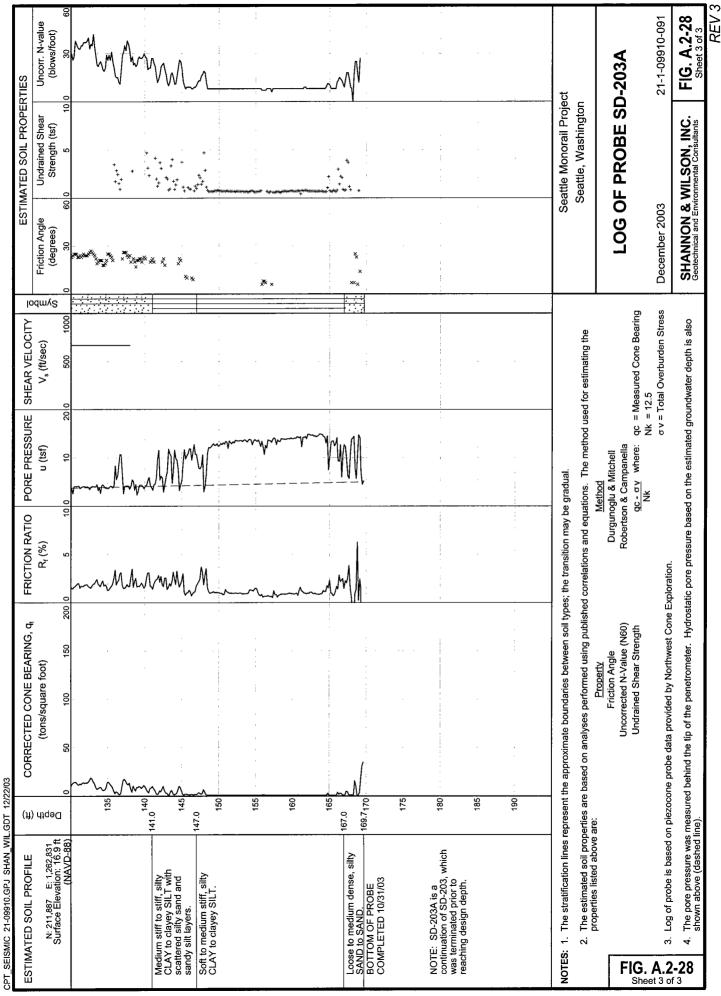
SOIL DESCRIPTION Coordinates: N: 216,468 E: 1,271,098	Depth, Ft.	Symbol	PID, ppm	Samples	Ground Water	Depth, Ft.	Standard Penetration Resistance (140 lb. weight, 30-inch drop) ▲ Blows per foot
Surface Elevation: 18.9 Ft. (NAVD-88)			<u>م</u>		- 83333		0 20 40 60
Medium dense, slightly silty SAND; (Ha) SP-SM (cont.) Medium dense, dark gray, silty, fine to	73.0		U	16			
medium SAND and fine sandy SILT; moist to wet; massive, scattered to abundant very			0	17		75	••••••••••••••••••••••••••••••••••••••
fine organic fragments; (Ha) SM/ML.			0	18		80	•
			o	19		85	
Medium dense, dark gray, slightly silty, fine SAND; moist; massive, abundant very fine	88.0		0	20		90	
organic fragments; (Ha) SP-SM. Medium dense to loose, dark gray, fine sandy SILT to silty, fine SAND; wet;	93.0		0	21		95	••••••••••••••••••••••••••••••••••••••
massive to bedded, abundant very fine organic fragments; (Ha) ML/SM.			o	22		100	
						105	 ●
Very soft, dark gray (oxidizes to	108.0		0	23			
gray-brown) SILT, trace of fine sand and clay; moist; massive; (He) ML.			0	24		110	
Medium dense, dark gray, slightly silty, fine SAND; moist; massive; (Ha) SP-SM.	114.8		0	25		115	
Very loose and loose, dark gray, fine sandy SILT; moist to wet; massive to bedded; scattered organic-rich seams; scattered			0	26		120	
seams of silty, fine sand, locally clayey at bottom; (He) ML.			0	27		125	•
17.1.2KI NC			0	28		130	
Rev: WDN			0	29		135	•
CONTINUED NEXT SHEET	137.5						
LEGEND							0 20 40 60
S ⊥ Standard Penetration Test NN Bentr B Bentr D Bentr D Bentr D Bentr	ometer So onite-Cer onite Chi onite Gro	ment ps/Pe out	Gro ellets	ut S	ilter		● % Water Content Plastic Limit
「	nd Watei nd Watei						Seattle Monorail Project Seattle, Washington
0		veen	soil	types, ar	nd		OG OF BORING SD-113
 3. The discussion in the text of this report is necessary for a nature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specessary for				-			Der 2003 21-1-09910-091
 Groundwater level, in indicated above, is for the date spectrum 5. Refer to KEY for explanation of symbols, codes and defined 6. USCS designation is based on visual-manual classification 	itions.	-		-			NON & WILSON, INC. al and Environmental Consultants Sheet 2 of 3


SOIL DESCRIPTION Coordinates: N: 216,468 E: 1,271,098	Jepth, Ft.	Symbol	PID, ppm	Samples	Ground Water	Depth, Ft.		Penetration weight, 30- Blows per		
Surface Elevation: 18.9 Ft. (NAVD-88)	De	S	Ы	ő	- ن	De	0 2	0	40	6
Interbedded, dense, gray, gravelly, silty SAND and hard, gray to green-gray, slightly clayey SILT; moist; bedded, scattered shell debris at top; (Hrw/Qvrl) ML/SM.			0	30 31		145	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
Hard, gray, slightly clayey to clayey SILT; moist; bedded; (Qpgl) ML.	148.0		0	32		150		••••••••••••••••••••••••••••••••••••••		
	- 158.0		0	33		155	· · · · · · · · · · · · · · · · · · ·			
Hard, gray, silty CLAY; moist; massive, scattered dropstones at top; (Qpgl) CL.	130.0		0	34		160	· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·	72
			o	35*		165	· · · · · · · · · · · · ·	• • • • • • • • • • •		· ·
			0	36		170		• • • • • • • • • •		<u>\</u>
BOTTOM OF BORING COMPLETED 8/13/2003	- 176.5		0	37		175		•	· · · · · · · · · ·	
Notes: 1. Soil descriptions above 7.0 feet are based on observations made during						180			· · · · · · · · · · · · · · · · · · ·	
vacuum excavation.2. PID readings during vacuum excavation were 0 ppm.						185	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
						190 195			· · · · · · · · · · · · · · · · · · ·	-
						200		· · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	-
						205		· · · · · · · · · · · ·		- - -
							0 2	· · · · · · · · · · · · · · · · · · ·	40	6
☐ Standard Penetration Test Image: Standard Penetration Test Image: Standard Penetration Test Image: StandardP	ometer S tonite-Ce tonite Chi tonite Gro und Wate	ment ips/P out	Gro ellets	3	lter		● Plastic Limi	% Water Co	ntent Liquid Limit	_
	und Wate							onorail Proje Washington	ct	
 The stratification lines represent the approximate boundatthe transition may be gradual. The discussion in the text of this report is necessary for a nature of the subsurface materials. 	aries betv					L	OG OF BO		SD-113	
4. Groundwater level, if indicated above, is for the date spe	ecified and may vary. initions.					December 2003 21-1-09910-091 SHANNON & WILSON, INC. FIG. A.2-15 Geotechnical and Environmental Consultants Sheet 3 of 3				


,


SOIL DESCRIPTION Coordinates: N: 215,931 E: 1,270,655	Depth, Ft.	Symbol PID ppm	Samples	Ground Water	■ Depth, Ft.	NETRATION Blows per Fo Blows per Fo	oot (SPT)	
Surface Elevation: 18.0 Ft. (NAVD-88)	ð	S I	s	ر ح	ے م	20	40	· 60
2" ASPHALT, 17" GRAVEL Base/subbase.	1.6							
Loose, dark gray, the to medium SAND, \[trace of silt to silty, fine SAND; moist; \[\]	4.8		I I_			:		
scattered organics; (Hf) SP/SM.			1	,			•	
Very soft, dark gray, slightly fine sandy,	9.0			I	10T ·			
slightly clayey SILT; wet; massive,					T			
abundant organics; (Hf/He) ML.					Ī			•
Very soft, dark gray, silty CLAY, trace of fine sand; wet; bedded, abundant organics,			4 5 <u>⊥</u>		Ī	-		
\neg scattered silt and peat seams at top;	20.5				20			
(Hf/He) CH/CL.		0				•		
Loose to medium dense, dark gray, fine to					T T			
medium SAND, trace of silt; wet; massive,			I B			•		
scattered organic and shell fragments; (Ha) SP.					30	<u> </u>		
SF.		0.2	2 9 <u> </u>					
Medium stiff, olive-gray, slightly fine sandy,	35.0	iiii						
\land clayey SILT; moist; bedded, scattered	37.7	<u> </u> 0	10			•	÷	
organic and shell fragments; (He) ML.					40			
Loose, dark gray, slightly silty, fine to	[·	- I - O	11				•	
medium SAND; wet; massive to bedded,						4		
abundant wood and shell fragments; (Ha) SP-SM.	-	- I o	12				•	
	51.0				50		:	
Medium dense and loose, dark gray,			13*					
slightly silty to silty, fine SAND and fine sandy SILT, trace of clay; wet; interbedded,								
scattered seams of clean sand, scattered			14			< ●	-	
shell fragments, abundant organics; (Ha)				(60			
SP-SM/ML.		0.2	15				•	
						1		
		0.1	16					
		制		-	70 / .			
		•	17		▲			•
						:		
		0.1	18				•	
Very loose, dark gray, fine sandy SILT,	81.0			c	80			
trace of clay; wet; massive to bedded,		0	19		\mathbf{k}		•	
abundant organics, scattered shell	86.0					2		
\fragments; (Ha) MI	(;	· 0	20		· · · · · · · · · · · · · · · · · · ·			I
LEGEND					0	20	40	60
	d Water L	evel A	ſD			Water		
६ Environmental Sample Obtained					Plastic	Limit		_imit
Standard Penetration Test							Content	
3.0" O.D. Osterberg Sample								
M Pressuremeter Test (f=failed) P 3" O.D. Pitcher Sample NOTES						e Monorail Pr	-	
1. The boring was performed using Mud Rotary drilling methods	s				Sea	ttle, Washing	ion	
2. The stratification lines represent the approximate boundaries		soil typ	es, and					
the transition may be gradual. 3. The discussion in the text of this report is necessary for a pro nature of the subsurface materials.					LOG OF	BORING	SD-122	
4. Groundwater level, if indicated above, is for the date specifie	ed and ma	ıy vary.		March	h 2004		21-1-0991(0-091
 Refer to KEY for explanation of symbols, codes and definition USCS designation is based on visual-manual classification a 				CUA		ILSON, INC.	FIG. A	2.24


SOIL DESCRIPTION Coordinates: N: 215,931 E: 1,270,655	Depth, Ft.	Symbol	PID, ppm	Samples	Ground Water	Depth, Ft.	PENETRATION RESISTANCE ▲ Blows per Foot (SPT) ▼ Blows per Foot (non-standard)
Surface Elevation: 18.0 Ft. (NAVD-88) Medium dense, dark gray, slightly silty to silty, fine SAND; wet; locally trace of clay,				21		<u> </u>	0 20 40 60
abundant wood fragments at top; (Ha) SP-SM/SM.			0.2	22		100	
Medium dense, dark gray, silty, fine SAND grading to clean to slightly silty, fine to medium SAND; wet; bedded with scattered	- 101.0		0.1	23		100	
slightly silty seams at bottom; (Ha) SM/SP-SM.			0.1	24		110	
			0.1	25 <u> </u>			
Medium dense and loose, dark gray, fine sandy SILT to medium stiff, slightly fine	121.0			20 <u> </u>		120	·····
sandy, clayey SILT; wet; massive to bedded, scattered organics; (Ha) ML.			o	28		130	•
			0,1	29			•
Very soft, dark gray, slightly clayey SILT,	141.0		0.1			140	
trace of fine sand to silty CLAY; moist to wet; massive, abundant organic and shell fragments; (He) ML/CH.			0.1	31 32 33		150	
				34 <u></u> *			
Medium dense, dark grav, fine sandy SILT:	100.0		0.2	35 <u> </u> * 36		160	•
Medium dense, dark gray, fine sandy SILT; wet; faintly bedded, partly cohesionless, abundant organics; (He/Ha) ML.	166.0 171.0		0.2	38		170	
Very soft, dark gray, clayey SILT, trace of fine sand; moist to wet; massive, scattered shell fragments; (He) ML/CL.			0.2 0.1	39 <u> </u>			•
	<u> </u>					N(D 20 40 60
	nd Water	Leve	a ATI	D			 % Water Content Plastic Limit Natural Water Content
M Pressuremeter Test (f=failed) P 3" O.D. Pitcher Sample NOTES							Seattle Monorail Project Seattle, Washington
 The boring was performed using Mud Rotary drilling method The stratification lines represent the approximate boundarie the transition may be gradual. The discussion in the text of this report is necessary for a p 	es betwee					LC	DG OF BORING SD-122
				-			
nature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specifi	ied and m	ay va	ary.		Ma	arch 20	21-1-09910-091


SOIL DESCRIPTION	Ť	0	ε	es	g_ t	
Coordinates: N: 215,931 E: 1,270,655	Depth, Ft.	Symbol	PID, ppm	Samples	Ground Water	Blows per Foot (SPT) ■ Blows per Foot (non-standard
Surface Elevation: 18.0 Ft. (NAVD-88)	j g	S S		Sar	<u>ک</u> ک	
		+	_			
Very loose to medium dense, green-gray,	182.0		0.2	41		
slightly silty, gravelly, clayey SAND to very						
soft to stiff, green-gray, sandy, silty CLAY,				42		
trace of gravel; moist; massive to bedded,				4∠	19	30
\setminus scattered organic fragments, scattered \square	191.0	Υ.				
sheared seams at bottom; (Hrw/Qvrl)				43		
SC/CL.						
Very dense, brown, slightly silty SAND;	198.0	ΠŤ		44		
moist; massive; (Qpgo) SP-SM.	201.0			¥.	20	
Very dense, gray-brown, sandy, gravelly	204.0			45		• • •
\SILT; moist; massive; (Qpgt) ML/GM.	201.0			*°_L		
SAND; moist; bedded with scattered sandy				46		2
silt seams, scattered organics; (Qpgo) SM.					21	0
Very stiff and hard, gray, silty CLAY, trace				47		
of sand; moist; massive, scattered gravel				~		T
dropstones; (Qpgl) CL/CH.				<u></u>		•
				48	22	
 Seam of light gray, clayey silt at 204.0 						
feet.				49		
				50		
- gravel inferred from drill action at 224				51		
feet.				M	23	0
	234.0			52		• • •
BOTTOM OF BORING	204.0					
COMPLETED 9/22/2003						
Noton: Soil departations and DID readings					24	0
Notes: Soil descriptions and PID readings above 7.0 feet are based on			ľ			
observations made during vacuum						
excavation.						
					25	0
					26	0
					20	6
	ľ					
	ĺ					
LEGEND				I		0 20 40
	nd Water	Level	ATD)		Water Content
Sample Not Recovered V. Groun						Plastic Limit
* Sample Not Recovered ∇ Groun E Environmental Sample Obtained						
						Natural Water Content
E Environmental Sample Obtained						
 E Environmental Sample Obtained Grab Sample T Standard Penetration Test 3.0" O.D. Osterberg Sample 						
 E Environmental Sample Obtained Grab Sample T Standard Penetration Test 3.0" O.D. Osterberg Sample M Pressuremeter Test (f=failed) 					[
E Environmental Sample Obtained Grab Sample Standard Penetration Test 0.0. Osterberg Sample Pressuremeter Test (f=failed) P 3" O.D. Pitcher Sample <u>NOTES</u>						Natural Water Content
 E Environmental Sample Obtained Grab Sample Standard Penetration Test 3.0" O.D. Osterberg Sample Pressuremeter Test (f=failed) 3" O.D. Pitcher Sample <u>NOTES</u> The boring was performed using Mud Rotary drilling methods 						Natural Water Content
 E Environmental Sample Obtained Grab Sample Standard Penetration Test 3.0" O.D. Osterberg Sample M Pressuremeter Test (f=failed) 3" O.D. Pitcher Sample NOTES The boring was performed using Mud Rotary drilling methods The stratification lines represent the approximate boundaries 		en soil	types	s, and		Natural Water Content Seattle Monorail Project Seattle, Washington
 E Environmental Sample Obtained Grab Sample Standard Penetration Test 3.0" O.D. Osterberg Sample M Pressuremeter Test (f=failed) 3" O.D. Pitcher Sample NOTES The boring was performed using Mud Rotary drilling methods The stratification lines represent the approximate boundaries the transition may be gradual. 	s betwee					Natural Water Content
 E Environmental Sample Obtained Grab Sample Standard Penetration Test 3.0" O.D. Osterberg Sample M Pressuremeter Test (f=failed) 3" O.D. Pitcher Sample NOTES 1. The boring was performed using Mud Rotary drilling methods 2. The stratification lines represent the approximate boundaries the transition may be gradual. 3. The discussion in the text of this report is necessary for a pronature of the subsurface materials. 	s betwee oper und	ferstar	nding			Natural Water Content Seattle Monorail Project Seattle, Washington
 E Environmental Sample Obtained Grab Sample Standard Penetration Test I Standard Penetration Test I 3.0" O.D. Osterberg Sample P 3" O.D. Pitcher Sample NOTES 1. The boring was performed using Mud Rotary drilling methods 2. The stratification lines represent the approximate boundaries the transition may be gradual. 3. The discussion in the text of this report is necessary for a pronature of the subsurface materials. 4. Groundwater level, if indicated above, is for the date specifie 	s betwee oper und ed and m	ferstar	nding		March	Natural Water Content Seattle Monorail Project Seattle, Washington
 E Environmental Sample Obtained Grab Sample Standard Penetration Test 3.0" O.D. Osterberg Sample M Pressuremeter Test (f=failed) 3" O.D. Pitcher Sample NOTES 1. The boring was performed using Mud Rotary drilling methods 2. The stratification lines represent the approximate boundaries the transition may be gradual. 3. The discussion in the text of this report is necessary for a pronature of the subsurface materials. 	s betwee oper und ed and m ons.	derstar nay vai	nding ry.	of the	March	Natural Water Content Seattle Monorail Project Seattle, Washington

APPENDIX C

IN SITU TESTING

TABLE OF CONTENTS

LIST OF SUBAPPENDICES

- C.1 **Pressuremeter Tests**
- Hammer Energy Transfer Measurements Downhole Seismic Tests C.2
- C.3

~

APPENDIX C.1

PRESSUREMETER TESTS

.

APPENDIX C.1

PRESSUREMETER TESTS

TABLE OF CONTENTS

TABLE

Table No.

C.1-1 Summary of Pressuremeter Test Results

REPORT

Report to Shannon & Wilson, Inc., from Hughes InSitu Engineering, Inc. (HIE): "Pressuremeter Testing Seattle Monorail, C-274," dated November 2003.

TABLE C-1 SUMMARY OF PRESSUREMETER TESTING

Boring No.	Test Name ¹	De] (fe	et)	Date of Test	Geologic Unit ²	Initial Shear Modulus ⁴	Modulus⁵	Limit Pressure	Undrained Cohesion ^{6,7}	Effective Friction Angle ⁶
en de la Enclation Production		Тор	Bott.			(psi)	(psi)	(psi)	(psi)	(degrees)
WS-103	M20	26.5	27.8	24-Sep	Qvd/Qvt	5,000	43,000	980	-	44
WS-103	M21	46	47.3	24-Sep	Qva	9,300	30,500	1,200	-	42
WS-103	M22	53	54.3	25-Sep	Qva	3,400	18,800	1,000	-	42
WS-106	M18	59	60.3	24-Sep	Qvro/Qva	2,300	15,000	770	(120)	(42)
WS-109	M30	28.5	29.8	26-Sep	Qpgl: Qpgm/Qpgo	hole too lar	ge	•		•
WS-109	M29	30	31.3	26-Sep	Qpgm/Qpgo	hole too lar	ge			
WS-112	M24	16	17.3	25-Sep	Qvro	550	1,700	150	24	-
WS-112	M23	17.5	18.8	25-Sep	Qvro: Qvri	600	2,200	125	22	-
WS-112	M26	43	44.3	25-Sep	Qpgm	hole too lar	ge			•
WS-112	M25	44.5	45.8	25-Sep	Qpgm	2,300	10,000	750	-	44
WS-113	M33	28	29.3	29-Sep	Qvri	hole too larg	ge			
WS-113	M34	38	39.3	29-Sep	Qvrl	hole too lar	ge			
WS-113	M37	54	55.3	30-Sep	Qvrl	1,400	3,800	300	45	-
WS-113	M38	74	75.3	30-Sep	Qpnl	3,700	9,000	570	-	42
WS-114	M46	110	111.3	2-Oct	Qpnl	4,500	17,400	900	-	40
WS-118	M40	51.5	52.8	30-Sep	Qpgl	hole too lar	ge			•
WS-118	M39	53	54.3	30-Sep	Qpgl	3,000	6,900	730	150	-
SD-122	M11	198	199.3	19-Sep	Qpgt/Qvt	equipment l	eak			
SD-122	M11a	198.5	199.8	19-Sep	Qpgt/Qvt	damaged me	embrane			-
SD-122	M10	199	200.3	19-Sep	Qpgt/Qvt	hole too lar	ge			
SD-122	M15	229.5	230.8	22-Sep	Qpgl	8,800	31,000	1,340	(170)	(40)
DT-101	M42	37	38.3	1-Oct	Ha	hole too lar	ge			
DT-102	M19	78	79.3	24-Sep	Qpgl	7,000	18,000	630	100	-
DT-106	M28	11	12.3	26-Sep	Qpgl	1,700	7,500	635	-	44
DT-106	M27	12.5	13.8	26-Sep	Qpgl	1,800	8,200	430	80	-
SC-102	M41	52.5	53.8	1-Oct	Qpnf	19,000	130,000	3,000	-	44
SC-103	M43	17.5	18.8	2-Oct	Qpnf	hole too lar	ge			
SC-103	M44	22.5	23.8	2-Oct	Qpnf	_	36,000	>400	>70	-
SC-103	M45	26	27.3	2-Oct	Qpgl	3,000	4,900	200	35	-
SC-104	M9	36.5	37.8	18-Sep	Qvt/Qvd	4,000	27,500	900	_	40
SC-104	M8	38	39.3	18-Sep	Qvt/Qvd	5,200	36,000	1,400	-	44
SC-105	M47	18.5	19.8	6-Oct	Qvt	2,000	34,000	700	-	40
SC-105	M49	39.5	40.8	6-Oct	Qpgl	2,700	10,000	540	80	-
SC-105	M48	40.5	41.8	6-Oct	Qpgl	2,800	10,000	480	70	-
SC-106	M32	20.5	21.8	29-Sep	Qvt	hole too larg	ge		L.,, .,	
SC-106	M31	22	23.3	29-Sep	Qvt	hole too lar	ge			
SC-106	M36	51.5	52.8	29-Sep	Qpgl	3,700	3,000	350	65	-
SC-106	M35	53	54.3	29-Sep	Qpgl	3,500	3,600	404	80	-

TABLE C-1 SUMMARY OF PRESSUREMETER TESTING

No. Name ¹ (feet) T		Date of Test Geologic Unit ²		Initial Shear Modulus ⁴	Unload-Reload Shear Modulus ⁵	Limit Pressure	2 및 상품에서 이 가격을 위한 것이다.	Effective Friction Angle ⁶		
		Тор	Bott.			(psi)	(psi)	(psi)	(psi)	(degrees)
IB-114	M55	62	63.3	10-Oct	Qpnf	19,000	170,000	1,450	180	-
IB-114	M56	79	80.3	10-Oct	Qpnl	3,200	25,000	940	-	40
IB-116	M52	38	39.3	8-Oct	Qpgl	800	12,000	420	70	-
IB-116	M53	56	57.3	8-Oct	Qpnl	6,000	46,000	900	120	-
IB-116	M54	57	58.3	8-Oct	Qpnl	5,200	35,000	950	(120)	(37)
IB-117	M50	53	54.3	7-Oct	Qpgo	4,300 24,000		1,200	-	44
IB-117	M51	73	74.3	7-Oct	Qpnf	2,600	12,000	950	-	40
BX-104	M57	28.5	29.8	13-Oct	Qpgm	blown meml	orane/shield, not e	entirely in p	oilot hole	
BX-104	M58	43	44.3	13-Oct	Qpgm	test not atte	ot attempted - could not push instrument into pilot hole			
BX-104	M59	52.7	54	14-Oct	Qpgo/Qpnf	hole collaps	ed, test not perfor	med		
BX-104	M60	62	63.3	14-Oct	Qpgo/Qpnf	2,500 14,000		550	-	40
BX-105	M61	19.5	20.8	15-Oct	Qpgm	2,100 24,000 4		450	70	-
BX-105	M62	45	46.3	15-Oct	Qpgo/Qpnf	7,400	85,000	1,350	-	40
BX-106	M63	18.5	19.8	16-Oct	Qpgm	2,000	75,000	720	95	-
BX-106	M64	38	39.3	16-Oct	Qpgo/Qpnf	9,000	55,000	1,300	180	-
BX-106	M65	60	61.3	16-Oct	Qpgo/Qpnf: Qpgl	gravels enco	ountered in pilot h	ole-could r	not insert instr	ument
BX-106	M66	74	75.3	17-Oct	Qpgl	3,100	16,000	770	120	-
BD-101	M12	11	12.3	22-Sep	Qvt/Qvd	2,200	37,000	540	-	40
BD-101	M13	33	34.3	22-Sep	Qvd	cable joint s	eparated			
BD-101	M14	38	39.3	22-Sep	Qvd	2,800	39,000	1,100	170	-
BD-101	M17	66.5	67.8	23-Sep	Qpgm	3,500	11,000	780	(140)	(44)
BD-101	M16	68	69.3	23-Sep	Qpgm	4,400	9,000	850	(130)	(44)
BD-105	M2	41.5	42.8	15-Sep	Qva	5,300	33,000	1,800	-	45
BD-105	M1	43	44.3	15-Sep	Qva	6,500	33,000	2,000	-	45
BD-107	M3	43	44.3	15-Sep	Qva/Qvd	hole too big	- shielding broke	in hole	•	
BD-109	M5	9.5	10.8	17-Sep	Qvt	2,000	28,000	850	(100)	(35)
BD-109	M4	11	12.3	17-Sep	Qva	1,800	28,000	800	(100)	(35)
BD-109	M7	31.5	32.8	18-Sep	Qva	3,800	30,000	1,000	-	40
BD-109	M6	33	34.3	18-Sep	Qva	2,700	28,000	1,350	-	43
		`		Tota	al Succesful Tests >	47				

NOTES:

- 1. See the boring logs in Appendix A for indicators of the test locations.
- 2. See Table A-1 in Appendix A for a detailed description of these units. If units are presented as X:Y, the test was performed at a transition between two soil layers (See boring logs in Appendix A).
- 3. psi = pounds per square inch
- 4. The initial modulus used to determine Menard modulus.
- 5. The secant modulus along the unload-reload curve.
- 6. If parentheses are around the values then the material has both cohesive and frictional properties. The analysis required the assumption of a friction angle from which an effective cohesive intercept can be calculated.
- 7. The cohesive values are the undrained cohesive strength assuming zero friction angle or the effective cohesive intercept if a friction angle is given (See note 6 above).

Pressuremeter Testing SEATTLE MONORAIL

submitted to

Shannon & Wilson, Inc.

400 North 34th Street, Suite 100 Seattle, WA 98103

> December 2003 C-274

CONTENTS

1.0	INTRODUCTION	2
2.0	OBJECT OF THE PRESSUREMETER INVESTIGATION	
3.0	PRESSUREMETER	2
4.0	HOLE FORMATION	2
5.0	TEST PROCEDURE	5
6.0	STANDARD PRESSUREMETER PARAMETERS	6
7.0	MODEL METHOD OF ANALYSIS	8
8.0	REFERENCES	8
ТАВ	LE	
Tabl	e 1. Basic material properties from pressuremeter tests	
	URES	
Fig. 1	1. Schematic outline of pressuremeter	3
Fig. 2	2. Range of pressuremeter data from West Seattle to South Seattle	4
Fig. 3	3. Basic pressuremeter test (Test 55)	7
	4 Limit pressuremeter test (from Test 55)	
T. /	5. Cohesive model analysis for Test 55 at 63.3 feet in Hole IB-114	9
	6. Frictional model analysis for Test 21 at 47.3 feet in Hole WS-103	

PHOTOGRAPHS

Photograph 1. '	View of existing monora	ail near Hole DT-106	1
i notograph it	Ten of emisting monoru		

APPENDIX

Basic pressuremeter data and interpretation plots

Photograph 1. View of existing monorail near Hole DT-106

1.0 INTRODUCTION

This report outlines the results of a pressuremeter study, conducted September 15–October 17, 2003, in 22 holes along the route of the proposed Seattle Monorail. The holes were drilled by three local drilling companies; Geotech, Holocene and PacRim. Hughes Insitu Engineering Ltd., under contract to Shannon and Wilson, Inc. performed pressuremeter testing. Ms. Monique Nykamp, P.E. of Shannon & Wilson, Inc., Seattle, supervised the detailed field work.

2.0 OBJECT OF THE PRESSUREMETER INVESTIGATION

The object of this investigation was to determine the general *in-situ* stiffness and strength of the granular materials sands silts and till along the proposed route of the Monorail.

3.0 PRESSUREMETER

The pressuremeter used for this study is a monocell pressuremeter. At the center of the pressuremeter are three electronic displacement sensors, spaced 120 degrees apart. Over these sensors is the flexible membrane, clamped at each end, which is pressurized to deform the adjacent material. A protective sheet of stainless steel strips covers the membrane. The pressuremeter was expanded by regulating the flow of gas from a bottle of compressed nitrogen. The electronic signals from displacement sensors and the pressure sensor are transmitted by cable to the surface. During the test, the average expansion against pressure curve is displayed on a computer screen.

The essential details of the instrument are shown in Fig. 1.

4.0 HOLE FORMATION

In general a four-inch diameter the hole was advanced to the test level. Depending on the stability of the material, this hole was sometimes cased. A pilot hole was then drilled with a $2^{15}/16$ -inch diameter tricone bit for a distance of 5-6 feet below the base of the four-inch diameter hole. The aim of this process was to cut a hole close to three inches in diameter, five feet long. The pressuremeter was then lowered into this pocket and a test conducted at the bottom of the test pocket. If the pressuremeter could be placed at the bottom of the hole, a second test was conducted approximately 1.5 feet further up the hole. In this manner, pairs of tests could be obtained at various selected depths down the hole.

This method of cutting the hole was not always successful, particularly in the granular materials with little silt binder. These pilot holes were either washout oversize or the hole caved in. In total, 74 tests were attempted, of which data were obtained in 49 tests. The tests covered a considerable range of material strength. The extremes of these tests are illustrated in Fig. 2, where tests 28 and 41 are plotted to the same scale.

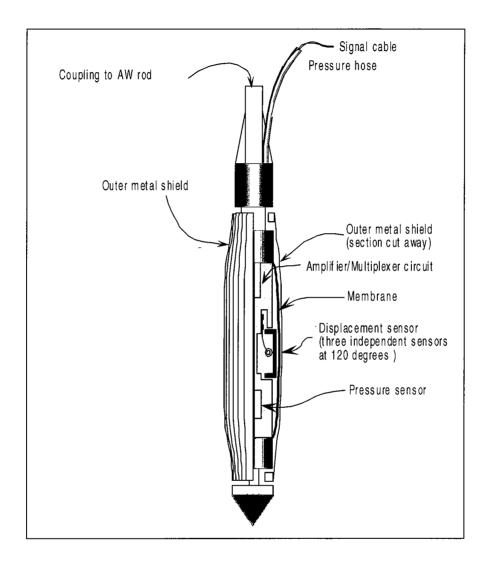


Fig. 1. Schematic outline of pressuremeter

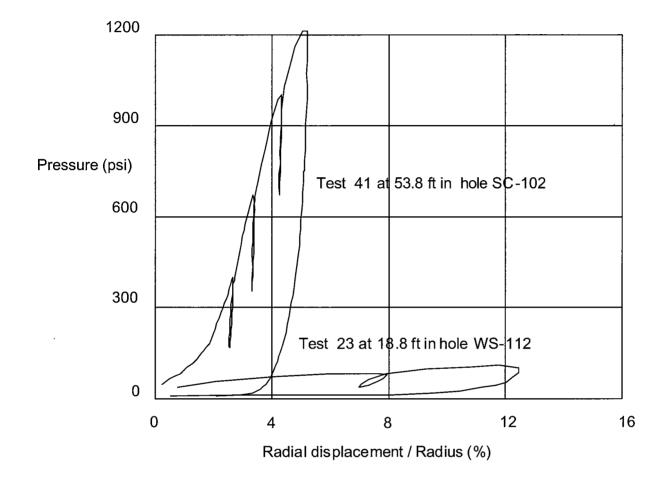


Fig. 2. Range of pressuremeter data from West Seattle to South Seattle

5.0 TEST PROCEDURE

After the pressuremeter was inserted to the bottom of the hole, the membrane was expanded by controlling the flow of compressed nitrogen into the pressuremeter, increasing the pressure in small steps. An example of the ideal pressuremeter tests is illustrated by Test 55 in Figure 3. The pressure was increased until one of the following conditions applied:

- The pressure was in excess of 1000 psi. This level of stress was considered to produce shear stresses within the rock well above those likely to be encountered during construction.
- One of the strain sensors reached a limit.
- During this expansion several unload-reload loops were conducted to determine the low strain shear modulus. Prior to this unload, the pressure was held constant for four minutes to obtain a qualitative indication of the creep behaviour of the matrix.

If the material surrounding the pressuremeter is assumed to extend to infinity, and to behave in an idealized manner, as a linear elastic, homogeneous material, which does not fail under shear or tension, then the displacement on the boundary of the pressuremeter, u_{α} , for a given pressure, P, is given by:

$$u_{\alpha} = P.\alpha (1+\mu) / E$$
 1)

where E is the Young's Modulus, α the radius of the pressuremeter cavity, and μ the Poisson's ratio.

As the shear modulus, G, and the Young's modulus, E, are related by the following relationship:

$$E=2.G.(1+\mu)$$
 2)

Equation 1 reduces to:

$$u_{\alpha} = 0.5P.\alpha / G$$

Hence, the shear modulus G is given by:

$$G = 0.5\Delta(\text{Pressure})/\Delta(\text{radial displacement/radius})$$

$$4)$$

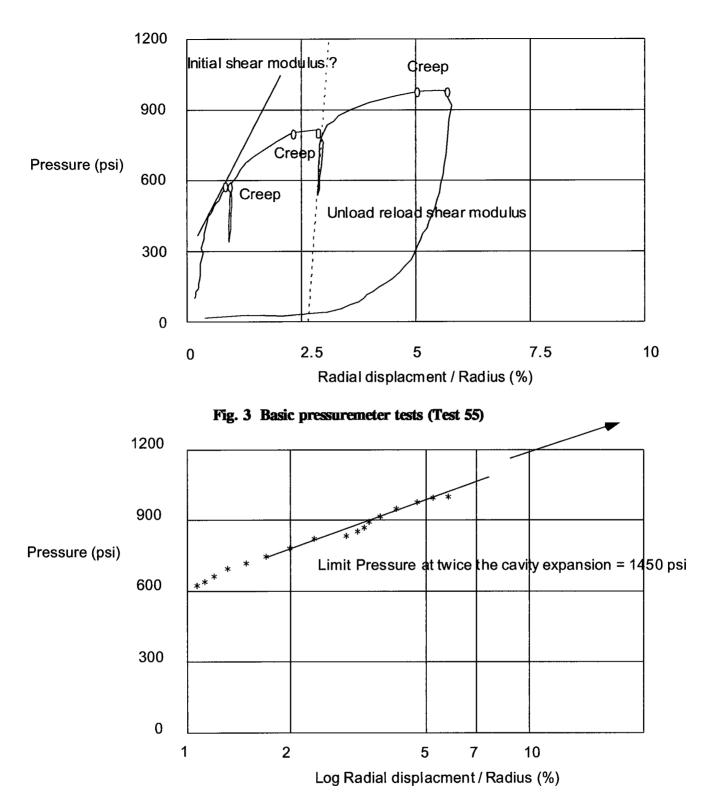
The pressuremeter data is often characterized by the modulus determined from the initial slope of the pressuremeter curve. In many instances this is not clearly defined as the pressuremeter curve does not always show a distinct linear section near the start as shown in Figure 3. Hence the choice of the initial modulus is subjective. The shear modulus values for the average slope of the initial part of the pressuremeter curve of all of the tests are summarized in the Table. The modulus for the average slope of the pressuremeter curve expressed as a Young's modulus (assuming a Poisson's ratio of 0.33) is the same as the "pressuremeter modulus" defined in the

American Society for Testing and Materials (ASTM) D4719-94, Section 9.5. Also included in the Table is the modulus determined from any unload-reload loops. This modulus is much more clearly defined and can be used to give an of the true elastic properties of the material.

6.0 STANDARD PRESSUREMETER PARAMETERS: LIMIT PRESSURE AND SHEAR STRENGTH

As a quantitative measure of the strength of the material, the "limit pressure", P_L , is commonly used. This is the pressure, which is calculated to occur when the pressuremeter has been assumed to deform the material by doubling the initial volume of the cavity. If the material being tested is assumed to behave as an elastic cohesive material, then the equation governing the pressure-displacement curve is given by:

$$P = P_L + c.\log_e (u_{\alpha}/\alpha)$$
5)


where P_L is the theoretical limit pressure at infinite expansion.

$$P_L = P_o + c + c \log_e [G/c] \tag{6}$$

Here, c is the undrained cohesive strength, P_O is the total in-situ lateral stress, and G the shear modulus. For typical values of G and c the ratio G/c lies between 50-100. Hence, the limit pressure is approximately 5 times the shear strength (assuming P_o is small relative to c).

From Equation 5, a plot of pressure P against the log of u_{α}/α will be a straight line (shown in Figure 4 for Test 55), provided the shear strength remains constant with. The slope of this line will give a measure of the shear strength c. The limit pressure, as defined by the ASTM code D4719, Section 9.6, is the pressure at which the cavity has doubled in size. This doubling in size occurs when u_{α}/α is equal to 41%. (The origin of the strain used in the log/normal plots is the assumed origin at the in-situ stress state).

The shear strengths calculated by this method for Seattle materials are usually an over estimate of the insitu shear strength hence they have not been reported in the Table

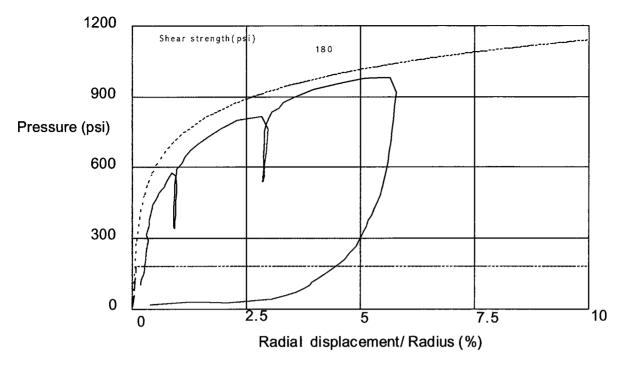


Fig.5. Cohesive model analysis for test 55 at 63.3 ft in hole IB-114

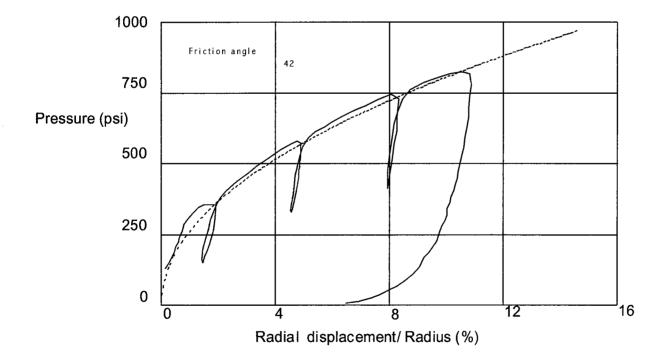


Fig. 6. Frictional model analysis for test 21 at 47.3 ft in hole WS -103

	Table 1. Basic material properties from pressuremeter tests								
Test	Hole	Depth (feet) ⁵	Initial shear modulus (psi)	Unload-reload Shear modulus (psi)	Limit Pressure (psi)	Cohesion (psi) ²	Friction angle ³		
1	BD-105	44.2	6,500	33,000	2,000	-	45		
2	BD-105	42.8	5,300	33,000	1,800	-	45		
4	BD-109	12.3	1,800	28,000	800	201	35 ¹		
-5	BD-109	10.8	2,000	28,000	850	20 ^{1*}	35 1		
6	BD-109	34.3	2,700	28,000	1,350	-	43		
7	BD-109	32.8	3,800	30,000	1,000	-	40		
8	SC-104	39.3	5,200	36,000	1,400	-	44		
9	SC-104	37.8	4,000	27,500	900	-	40		
11	SC-122	199.3	5,400	16,000	550	20 ¹	3 5 ¹		
12	BD-101	11	2,200	37,000	540	-	40		
14	B(D=101	393	2.800	39,000	1.100	170			
15	SD-122	230.8	8,800	31.000	1,340	70 ¹	35 ¹		
-16	BD-101	69.3	-4,400	9,000	850	70 ¹	35 ¹		
17	BD-101	67.8	3,500	11,000	780	50 ¹	35 ¹		
-18	WS-106	60.3	2,300	15,000	770	-50 ¹	35 ¹		
19	DT-102	79,3	7.000	18,000	630	1000			
20	WS-103	27.8	5,000	43,000	980	-	44		
21	WS-103	47.3	9,300	30,500	1,200	-	42		
22	WS-103	53	3,400	18,800	1,000	-	42		
23	WS-112	10,0	600	2.200	125	22			
24)		17.3	550	1,700	150	. Ž4			
25	WS-112	45.8	2,300	10,000	750		44		
27)	DT-106	113.8	1,800	8,200	430	80			
28	DT-106	12.3	1,700	7,500	635		44		
35	SC-106	54.3	3,500	3,600	404	30			
.36	SC-106	52,8	3,700	3,000	350	65			
377	WS-143	55,3.	1,400	3,800	300	45,			
38	WS-113	75.3	3,700	9,000	570	-	42		

	Table 1. Basic material properties from pressuremeter tests								
Test	Hole	Depth (feet) ⁵	Initial shear modulus (psi)	Unload-reload Shear modulus (psi)	Limit Pressure (psi)	Cohesion (psi) ²	Friction angle ³		
39	WS IIIS	54.5	3,,000	.E.DOO	7/3/0	1.50			
41	SC-102	53.8	19,000	130,000	3,000	-	44		
	SVC-1103	23 8		36.000	>4000	>70			
45	SC-103	27.3	3,000	4,900	200	20			
46	WS-114	111.3	4,500	17,400	900	-	40		
47	SC-105	19.8	2,000	34,000	700	-	40		
48	SC-105	4: <u>1</u> .8	2,800	10.000	480	70			
49)	SC-105	40.8	2,700	1(0),0(0)0	\$40	\$0			
50	IB-117	54.3	4,300	24,000	1,200	-	44		
-51	IB-117	74.3	2,600	12,000	950	-	40		
52	054196	2.(0) (2) 2.(2)	\$00	1.2.000		70	=		
1990 1929	13-116	57.5	6,000	4)6.(0.010)	200	120			
54	B -116	58.3	5,200	35,000	950	301	35 ¹		
55	11B)=111[2]	63.3	19,000	170,000	1,450	11300			
56	IB-114	80.3	3,200	25,000	940		40		
60	BX-104	63.3	2,500	14,000	550	-	40		
61	BX-105	20.8	2,1100	241,000	4500	70. s. s. j. s. j.			
62	BX-105	46.3	7,400	85,000	1,350	-	40		
63	BX-106	19,8	2,000	75,00 0	720	93			
64	BX-106	39.3	2.000	55,000	1,300	180			
66	BX=106	715.3	3,100	16,000	770	120			

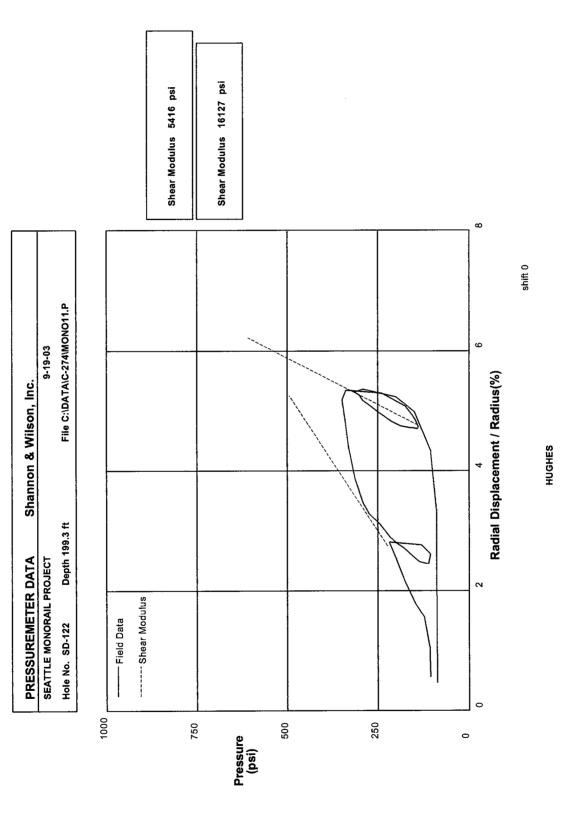
Notes

¹ These tests indicate a material that has both cohesive and frictional properties. The analysis required the assumption of a friction angle (35 degrees) from which an effective cohesive intercept can be calculated.

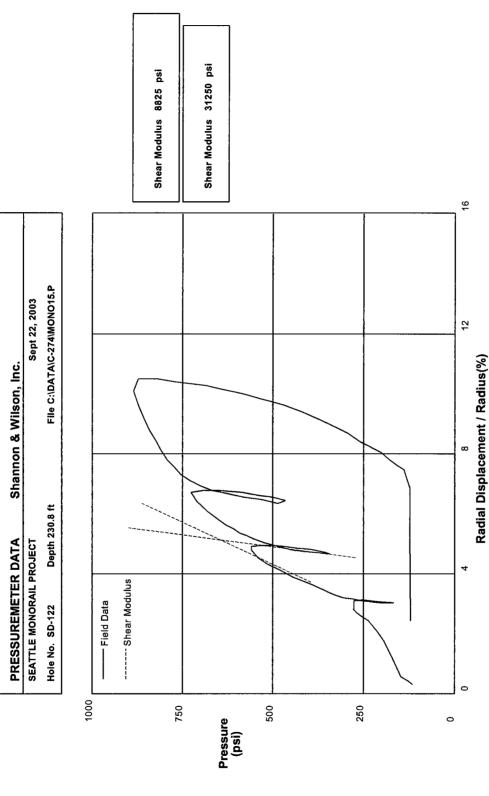
 2 In this column the cohesive values are the undrained cohesive strength assuming zero friction angle or the effective cohesive intercept if a friction angle is given (see Note 1 above).

³ In this column the friction values are effective friction angle.

⁴ The materials are divided into three types by shading: purely frictional, purely cohesive and a combination of effective cohesion and friction.


⁵ The depths refer to the bottom of the test section. The whole test section is 16 inches in length.

Appendix


Pressure expansion curves for pressuremeter tests

1

: :

shift 0

APPENDIX C.3

DOWNHOLE SEISMIC TESTS

Report to Shannon & Wilson, Inc., from GEOVision Geophysical Services: "Seattle Monorail Borings BX-102, BX-107, IB-104, IB-111, IB-115, SD-101, SD-108, SD-110, SD-116 and WS-105 Suspension P & S Velocities", dated November 14, 2003.

geophysical services a division of Blackhawk Geometrics

SEATTLE MONORAIL BORINGS BX-102, BX-107, IB-104, IB-111, IB-115, SD-101, SD-108, SD-110, SD-116 AND WS-105 SUSPENSION P & S VELOCITIES

December 8, 2003

SEATTLE MONORAIL BORINGS BX-102, BX-107, IB-104, IB-111, IB-115, SD-101, SD-108, SD-110, SD-116 AND WS-105 SUSPENSION P & S VELOCITIES

Prepared for

Shannon & Wilson, Inc 400 North 34th Street, Suite 100 Seattle, Washington 98103 (206)-695-6800

Prepared by

GEOVision Geophysical Services 1151 Pomona Road, Unit P Corona, California 92882 (909) 549-1234 Project 3437

> December 8, 2003 Report 3437-02

TABLE OF CONTENTS

INTRODUCTION
SCOPE OF WORK
SUSPENSION INSTRUMENTATION
SUSPENSION MEASUREMENT PROCEDURES
SUSPENSION DATA ANALYSIS
SUSPENSION RESULTS
SUMMARY
Discussion of Suspension Results
Quality Assurance
Data Reliability

FIGURES

Figure 1. Concept illustration of P-S logging system with 7.02 ft S-R1 isolation	11
Figure 1. Concept illustration of P-S logging system with 10.30 ft S-R1 isolation	12
Figure 3. Filtered (800 Hz lowpass) 59.1 ft record from Boring SD-110	13
Figure 4. Unfiltered 59.1 ft record from Boring SD-110	14
Figure 5. Boring BX-02, Suspension P- and S _H -wave velocities	15
Figure 6. Boring BX-07, Suspension P- and S _H -wave velocities	17
Figure 7. Boring IB-104, Suspension P- and S _H -wave velocities	21
Figure 8. Boring IB-111, Suspension P- and S _H -wave velocities	23
Figure 9. Boring IB-115, Suspension P- and S_H -wave velocities	25
Figure 10. Boring SD-101, Suspension P- and S _H -wave velocities	27
Figure 11. Boring SD-108, Suspension P- and S _H -wave velocities	32
Figure 12. Boring SD-110, Suspension P- and S _H -wave velocities	36
Figure 13. Boring SD-116, Suspension P- and S _H -wave velocities	40
Figure 14. Boring WS-105, Suspension P- and S _H -wave velocities	43

TABLES

Table 1. Boring locations and logging dates 2
Table 2. Logging dates and depth ranges6
Table 3. Boring BX-02, Suspension R1-R2 depth, pick times, and velocities
Table 4. Boring BX-07, Suspension R1-R2 depth, pick times, and velocities
Table 5. Boring IB-104, Suspension R1-R2 depth, pick times, and velocities
Table 6. Boring IB-111, Suspension R1-R2 depth, pick times, and velocities24
Table 7. Boring IB-115, Suspension R1-R2 depth, pick times, and velocities
Table 8. Boring SD-101, Suspension R1-R2 depth, pick times, and velocities
Table 9. Boring SD-108, Suspension R1-R2 depth, pick times, and velocities
Table 10. Boring SD-110, Suspension R1-R2 depth, pick times, and velocities
Table 11. Boring SD-116, Suspension R1-R2 depth, pick times, and velocities 41
Table 12. Boring WS-105, Suspension R1-R2 depth, pick times, and velocities 44

APPENDICES

APPENDIX A: Suspension velocity measurement quality assurance suspension source to receiver analysis results

APPENDIX A FIGURES

Figure A-1.	Boring BX-02, R1 - R2 high resolution analysis and S-R1 quality assurance analysis P- and S _H -wave data	A-2
Figure A-2.	Boring BX-07, R1 - R2 high resolution analysis and S-R1 quality assurance analysis P- and S_H -wave data	A-4
Figure A-3.	Boring IB-104, R1 - R2 high resolution analysis and S-R1 quality assurance analysis P- and S _H -wave data	A-7
Figure A-4.	Boring IB-111, R1 - R2 high resolution analysis and S-R1 quality assurance analysis P- and S _H -wave data	A-9
Figure A-5.	Boring IB-115, R1 - R2 high resolution analysis and S-R1 quality assurance analysis P- and S _H -wave data	A- 11
Figure A-6.	Boring SD-101, R1 - R2 high resolution analysis and S-R1 quality assurance analysis P- and S _H -wave data	A-13
Figure A-7.	Boring SD-108, R1 - R2 high resolution analysis and S-R1 quality assurance analysis P- and S _H -wave data	A-16
Figure A-8.	Boring SD-110, R1 - R2 high resolution analysis and S-R1 quality assurance analysis P- and S _H -wave data	A-19
Figure A-9.	Boring SD-116, R1 - R2 high resolution analysis and S-R1 quality assurance analysis P- and S _H -wave data	A- 22
Figure A-10.	Boring WS-105, R1 - R2 high resolution analysis and S-R1 quality assurance analysis P- and S_H -wave data	A-24

APPENDIX A TABLES

Table A-1.	Boring BX-02, S - R1 quality assurance analysis P- and S _H -wave dataA-3
Table A-2.	Boring BX-07, S - R1 quality assurance analysis P- and S _H -wave dataA-5
Table A-3.	Boring IB-104, S - R1 quality assurance analysis P- and S _H -wave dataA-8
Table A-4.	Boring IB-111, S - R1 quality assurance analysis P- and S _H -wave dataA-10
Table A-5.	Boring IB-115, S - R1 quality assurance analysis P- and S _H -wave dataA-12
Table A-6.	Boring SD-101, S - R1 quality assurance analysis P- and S _H -wave dataA-14
Table A-7.	Boring SD-108, S - R1 quality assurance analysis P- and S _H -wave dataA-17
Table A-8.	Boring SD-110, S - R1 quality assurance analysis P- and S _H -wave dataA-20
Table A-9.	Boring SD-116, S - R1 quality assurance analysis P- and S _H -wave dataA-23
Table A-10.	Boring WS-105, S - R1 quality assurance analysis P- and S _H -wave dataA-25

APPENDIX B: OYO Model 170 suspension velocity logging system NIST traceable calibration procedure

INTRODUCTION

OYO suspension velocity measurements were performed in eight land borings and two marine along the proposed Seattle Monorail alignment, as an element of the site exploration program for the Seattle Monorail Extension Project. Suspension logging data acquisition was performed between August 27 and October 17, 2003 by Rob Steller of Geovision. The work was performed under subcontract with Shannon and Wilson, with Monique Nykamp and Tyler Stevens as the field liaisons for Shannon and Wilson.

This report describes the field measurements, data analysis, and results of this work.

SCOPE OF WORK

This report presents the results of suspension velocity measurements collected between August 27 and October 17, 2003, in the uncased borings located in Seattle, as designated below. The purpose of these studies was to supplement stratigraphic information obtained from Shannon and Wilson' soil and rock sampling program and to acquire shear wave velocities and compressional wave velocities as a function of depth, which, in turn, can be used to characterize ground response to earthquake motion.

BORING	DATE	LAND/	ELEVATION	COORDINAT	TES (NAD83)
DESIGNATION	LOGGED	MARINE	(FT)	NORTHING	EASTING
BX-102	10/8/03	MARINE	21.56	243332.854	1260195.106
BX-107	10/11/03	MARINE	21.65	244716.878	1260149.470
IB-104	9/12/03	LAND	20.26	232158.582	1262086.640
IB-111	10/09/03	LAND	17.74	235917.865	1260036.899
IB-115	10/10/03	LAND	50.19	237769.611	1260066.768
SD-101	8/27/03	LAND	124.39	228414.372	1268103.177
SD-108	8/28/03	LAND	14.98	215043.522	1269773.036
SD-110	10/10/03	LAND	N/A	N/A	N/A
SD-116	8/30/03	LAND	17.39	218011.328	1271125.366
WS-105	10/27/03	LAND	306.05	206303.723	1256793.041

Table 1. Boring locations and logging dates

The OYO Model 170 Suspension Logging Recorder and Suspension Logging Probe were used to obtain in-situ horizontal shear and compressional wave velocity measurements at 1.64 ft intervals. The acquired data was analyzed and a profile of velocity versus depth was produced for both compressional and horizontally polarized shear waves.

A detailed reference for the velocity measurement techniques used in this study is:

<u>Guidelines for Determining Design Basis Ground Motions</u>, Report TR-102293, Electric Power Research Institute, Palo Alto, California, November 1993, Sections 7 and 8.

SUSPENSION INSTRUMENTATION

Suspension soil velocity measurements were performed using the Model 170 Suspension Logging system, manufactured by OYO Corporation. This system directly determines the average velocity of a 3.28 ft high segment of the soil column surrounding the boring of interest by measuring the elapsed time between arrivals of a wave propagating upward through the soil column. The receivers that detect the wave, and the source that generates the wave, are moved as a unit in the boring producing relatively constant amplitude signals at all depths.

The suspension system probe consists of a combined reversible polarity solenoid horizontal shear-wave source (S_H) and compressional-wave source (P), joined to two biaxial receivers by a flexible isolation cylinder, as shown in Figures 1 and 2. The separation of the two receivers is 3.28 ft, allowing average wave velocity in the region between the receivers to be determined by inversion of the wave travel time between the two receivers. The total length of the probe as used in these surveys was 19 or 22 ft, depending upon the source to receiver 1 (S-R1) isolation, with the center point of the receiver pair located 12.1 or 15.4 ft, respectively, above the bottom end of the probe, as illustrated in Figures 1 and 2. S-R1 isolation for each boring is listed in table 2. The probe receives control signals from, and sends the amplified receiver signals to, instrumentation on the surface via an armored 7 conductor cable. The cable is wound onto the drum of a winch and is used to support the probe. Cable travel is measured to provide probe depth data.

The entire probe is suspended by the cable and centered in the boring by nylon "whiskers", therefore, source motion is not coupled directly to the boring walls; rather, the source motion creates a horizontally propagating impulsive pressure wave in the fluid filling the boring and surrounding the source. This pressure wave is converted to P and S_H -waves in the surrounding soil and rock as it impinges upon the boring wall. These waves propagate through the soil and rock surrounding the boring, in turn causing a pressure wave to be generated in the fluid surrounding the receivers as the soil waves pass their location. Separation of the P and S_H -waves at the receivers is performed using the following steps:

- Orientation of the horizontal receivers is maintained parallel to the axis of the source, maximizing the amplitude of the recorded S_H-wave signals.
- At each depth, S_H-wave signals are recorded with the source actuated in opposite directions, producing S_H-wave signals of opposite polarity, providing a characteristic S_H-wave signature distinct from the P-wave signal.
- The 7.02 or 10.30 ft separation of source and receiver 1 permits the P-wave signal to pass and damp significantly before the slower S_H-wave signal arrives at the receiver. In faster soils or rock, the isolation cylinder is extended to allow greater separation of the P- and S_H-wave signals.
- In saturated soils, the received P-wave signal is typically of much higher frequency than the received S_H-wave signal, permitting additional separation of the two signals by low pass filtering.
- 5. Direct arrival of the original pressure pulse in the fluid is not detected at the receivers because the wavelength of the pressure pulse in fluid is significantly greater than the dimension of the fluid annulus surrounding the probe (meter versus centimeter scale), preventing significant energy transmission through the fluid medium.

In operation, a distinct, repeatable pattern of impulses is generated at each depth as follows:

- The source is fired in one direction producing dominantly horizontal shear with some vertical compression, and the signals from the horizontal receivers situated parallel to the axis of motion of the source are recorded.
- 2. The source is fired again in the opposite direction and the horizontal receiver signals are recorded.
- 3. The source is fired again and the vertical receiver signals are recorded. The repeated source pattern facilitates the picking of the P and S_H-wave arrivals; reversal of the source changes the polarity of the S_H-wave pattern but not the P-wave pattern.

The data from each receiver during each source activation is recorded as a different channel on the recording system. The Model 170 has six channels (two simultaneous recording channels), each with a 12 bit 1024 sample record. The recorded data is displayed on a CRT display and on paper tape output as six channels with a common time scale. Data is stored on 3.5 inch floppy diskettes for further processing. Up to 8 sampling sequences can be summed to improve the signal to noise ratio of the signals.

Review of the displayed data on the CRT or paper tape allows the operator to set the gains, filters, delay time, pulse length (energy), sample rate, and summing number to optimize the quality of the data before recording. Verification of the calibration of the Model 170 digital recorder is performed every twelve months using a NIST traceable frequency source and counter, as outlined in Appendix B.

SUSPENSION MEASUREMENT PROCEDURES

All borings were logged as uncased borings filled with bentonite based drilling fluid or clear water. Prior to entering the land borings, the mid-point of the receivers was placed at grade, and the mechanical and electronic depth counters were set to zero. On the two marine borings, the mid-point of the receivers was lowered to mud line, and the mechanical and electronic depth counters were set to zero. The probe was lowered to the bottom of the boring, then returned to the bottom of the conductor casing or the surface, stopping at 1.64 ft intervals to collect data, as summarized in Table 2.

At each measurement depth the measurement sequence of two opposite horizontal records and one vertical record was performed, and the gains were adjusted as required. The data from each depth was printed on paper tape, checked, and recorded on diskette before moving to the next depth. Upon completion of the measurements, the probe zero depth indication at grade or mud line was verified prior to removal from the boring.

BORING NUMBER	RUN NUMBER	MEASURED DEPTH RANGE (FEET)	DEPTH AS DRILLED (FEET)	AUGER OR CONDUCTOR CASING DEPTH (FEET)	LOST TO COLLAPSE (FEET)	S-R1 ISOLATION (FEET)	DATE LOGGED
BX-102	1	21.3 – 64.0	77	CASING AT 17 FT	0.9	7.02	10/8/03
BX-102	2	9.8 – 21.3	77	CASING AT 12 FT	0	7.02	10/8/03
BX-107	1	9.8 - 204.4	218	CASING AT 9 FT	1.5	7.02	10/11/03
IB-104	1	19.7 – 71.5	85.3	AUGER AT 20 FT	1.7	7.02	9/12/03
IB-111	1	11.5 – 76.4	90	AUGER AT 10 FT	1.5	7.02	10/09/03
IB-115	1	24.6 - 109.9	130	AUGER AT 25 FT	8.0	7.02	10/10/03
SD-101	1	3.3 –192.9	210	NONE	1.7	10.30	8/27/03
SD-108	1	8.2 – 226.4	246.5	NONE	4.7	10.30	8/28/03
SD-110	1	21.3 – 231.0	247	AUGER AT 18 FT	3.9	7.02	10/10/03
SD-116	1	16.4 – 103.3	120	AUGER AT 15 FT	1.3	10.30	8/30/03
WS-105	1	8.2 – 146.0	162.5	AUGER AT 10 FT	4.4	7.02	10/27/03

Table 2. Logging dates and depth ranges

SUSPENSION DATA ANALYSIS

The recorded digital records were analyzed to locate the first minima on the vertical axis records, indicating the arrival of P-wave energy. The difference in travel time between receiver 1 and receiver 2 (R1-R2) arrivals was used to calculate the P-wave velocity for that 3.28 ft segment of the soil column. When observable, P-wave arrivals on the horizontal axis records were used to verify the velocities determined from the vertical axis data.

The P-wave velocity calculated from the travel time over the 7.02 or 10.30 ft interval from source to receiver 1 (S-R1) was calculated and plotted for quality assurance of the velocity derived from the travel time between receivers. In this analysis, the depth values as recorded were increased by 5.15 or 6.79 ft, dependant upon S-R1 isolation, to correspond to the mid-point of the S-R1 interval, as illustrated in Figures 1 and 2. Travel times were obtained by picking the first break of the P-wave signal at receiver 1 and subtracting 3.9 milliseconds, the calculated and experimentally verified delay from the source trigger pulse to source impact. This delay corresponds to the duration of acceleration of the solenoid before impact.

The recorded digital records were studied to establish the presence of clear S_H -wave pulses, as indicated by the presence of opposite polarity pulses on each pair of horizontal records. Ideally, the S_H -wave signals from the 'normal' and 'reverse' source pulses are very nearly inverted images of each other. Digital FFT - IFFT lowpass filtering was used to remove the higher frequency P-wave signal from the S_H -wave signal. Different filter cutoffs were used to separate P- and S_H -waves at different depths, ranging from 500 Hz in the slowest zones to 5000 Hz in the regions of highest velocity. At each depth, the filter frequency was selected to be at least twice the fundamental frequency of the S_H -wave signal being filtered.

Generally, the first maxima was picked for the 'normal' signals and the first minima for the 'reverse' signals, although other points on the waveform were used if the first pulse was distorted. The absolute arrival time of the 'normal' and 'reverse' signals may vary by +/- 0.2 milliseconds, due to differences in the actuation time of the solenoid source caused by constant mechanical bias in the source or by boring inclination. This variation does not affect the R1-R2 velocity determinations, as the differential time is measured between arrivals of waves created by the same source actuation. The final velocity value is the average of the values obtained from the 'normal' and 'reverse' source actuations.

As with the P-wave data, S_H -wave velocity calculated from the travel time over the 7.02 or 10.30 ft interval from source to receiver 1 was calculated and plotted for verification of the velocity derived from the travel time between receivers. In this analysis, the depth values were increased by 5.15 or 6.79 ft to correspond to the mid-point of the S-R1 interval. Travel times were obtained by picking the first break of the S_H-wave signal at the near receiver and subtracting 3.9 milliseconds, the calculated and experimentally verified delay from the beginning of the record at the source trigger pulse to source impact.

Figure 3 shows an example of R1 - R2 measurements on the filtered record from SD-110 at a depth of 59.1 ft. In Figure 3, the time difference over the 3.28 ft interval of 5.85 milliseconds for the horizontal signals is equivalent to an S_H -wave velocity of 561 ft/sec. Whenever possible, time differences were determined from several phase points on the S_H -waveform records to verify the data obtained from the first arrival of the S_H -wave pulse. Figure 4 displays the same record before filtering of the S_H -waveform record with an 800 Hz FFT - IFFT digital lowpass filter, illustrating the presence of higher frequency P-wave energy at the beginning of the record, and distortion of the lower frequency S_H -wave by residual P-wave signal.

SUSPENSION RESULTS

Suspension R1-R2 P- and S_H -wave velocities are plotted in Figures 5 – 14. The suspension velocity data presented in these Figures are presented in Tables 3 – 12. P- and S_H -wave velocity data from R1-R2 analysis and quality assurance analysis of S-R1 data are plotted together in Figures A1 – A10 to aid in visual comparison. It must be noted that R1-R2 data is an average velocity over a 3.28 ft segment of the soil column; S-R1 data is an average over 7.02 or 10.30 ft, creating a significant smoothing relative to the R1-R2 plots. S-R1 data are presented in tabular format in Tables A1 – A10. Good correspondence between the shape of the P- and S_H -wave velocity curves is observed for all these data sets. The velocities derived from S-R1 and R1-R2 data.

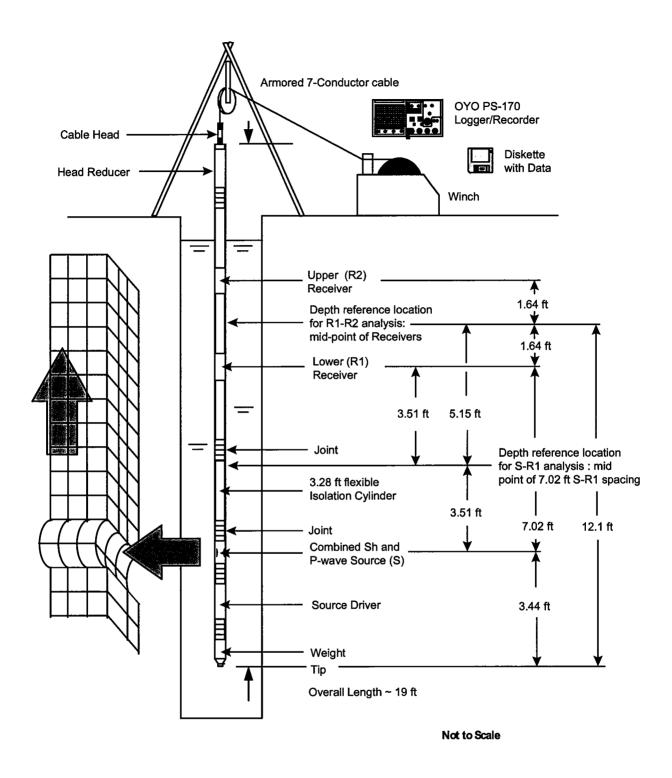
Calibration procedures and records for the suspension measurement system are presented in Appendix B.

SUMMARY

Discussion of Suspension Results

Both P- and S_H -wave velocities were measured using the Suspension in eight land and two marine borings along the proposed Seattle Monorail alignment. All the borings were located in an urban area with substantial traffic nearby, but no significant contamination of the recorded data from cultural vibration was observed. In several instances, nearby train traffic necessitated the suspension of data collection until the train had passed.

All of the South of Downtown borings (SD-101, SD-108, SD-110 and SD-116) exhibited significant variation in the P-wave velocities below water table, despite relatively constant S_{H^-} wave velocities in the same regions. This is caused by entrained gas bubbles in the soil, generally caused by decomposition of organic material in the soil.


Quality Assurance

These velocity measurements along the proposed Seattle Monorail alignment were performed using industry-standard or better methods for both measurements and analyses. All work was performed under Geovision quality assurance procedures, which include:

- Use of NIST-traceable calibrations, where applicable, for field and laboratory instrumentation
- Use of standard field data logs
- Use of independent verification of data by comparison of receiver-to-receiver and source-to-receiver velocities
- Independent review of calculations and results by a registered professional engineer, geologist, or geophysicist.

Data Reliability

P- and S_H-wave velocity measurement using the Suspension Method gives average velocities over a 3.28 ft interval of depth. This high resolution results in the scatter of values shown in the graphs. Individual measurements are very reliable with estimated precision of \pm -5%. Standardized field procedures and quality assurance checks add to the reliability of these data.



Figure 2. Concept illustration of P-S logging system with 10.30 S-R1 isolation

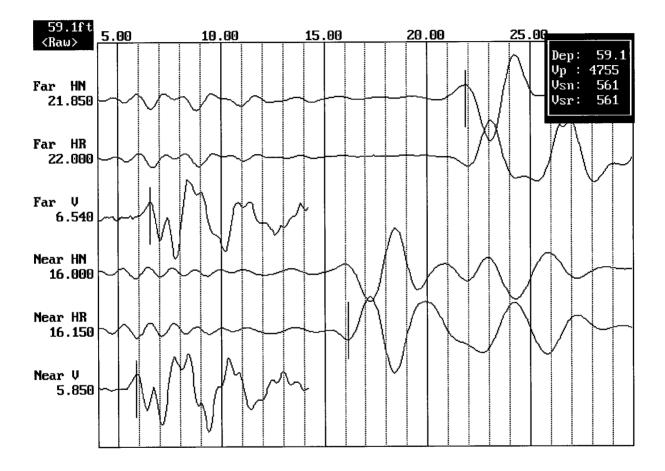


Figure 3. Filtered (800 Hz lowpass) record from Boring SD-110 at 59.1 ft

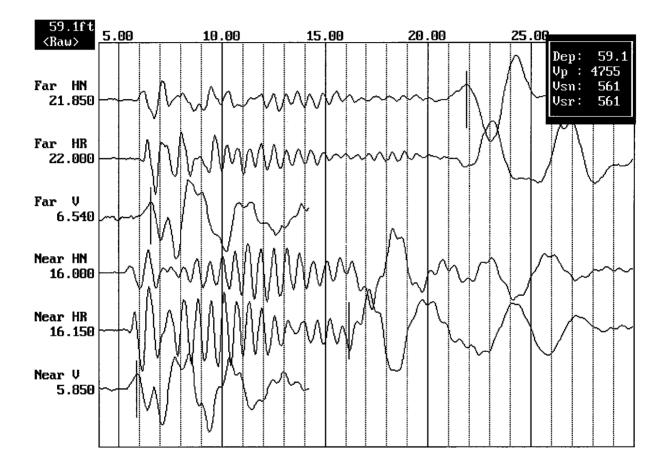


Figure 4. Unfiltered record from Boring SD-110 at 59.1 ft

VELOCITY (FEET/SECOND)

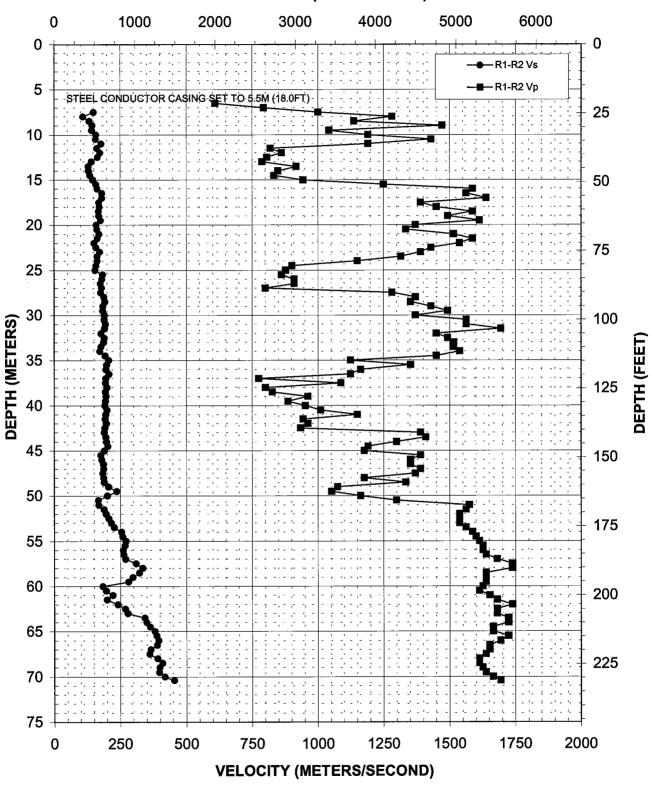


Figure 12. Boring SD-110, Suspension P- and S_H-wave velocities

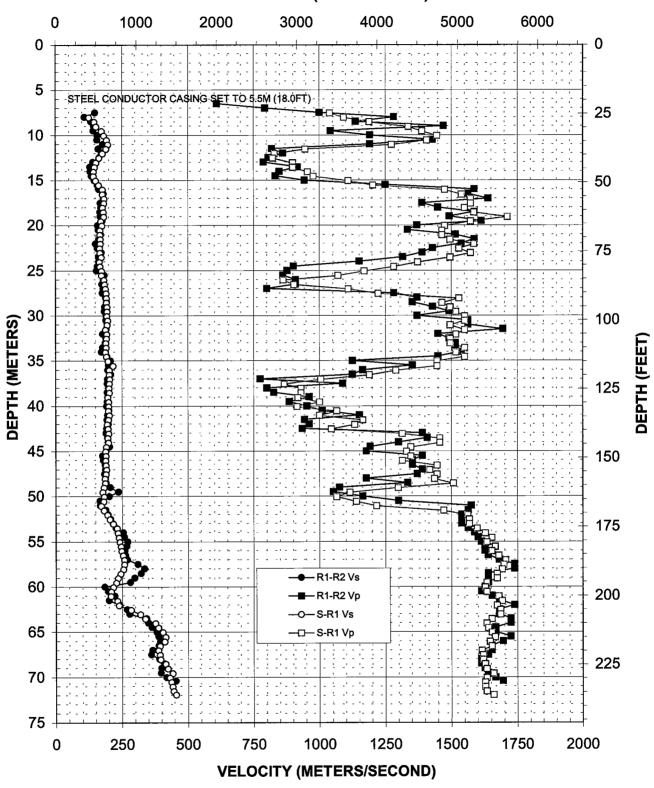
De	pth	· · · ·		Pick ⁻	Times				Velo	ocity	
		Far-Hn	Far-Hr	Far-V	Near-Hn	Near-Hr	Near-V	V-S _H	V-P	V-S _H	V-P
(m)	(feet)	(millisec)	(millisec)	(millisec)	(millisec)	(millisec)	(millisec)	(m/sec)	(m/sec)	(ft/sec)	(ft/sec)
6.5	21.3			8.78			7.14		610		2001
7.0	23.0			7.92			6.66		794		2604
7.5	24.6	22.30	23.95	6.92	15.60	17.25	5.92	149	1000	490	3281
8.0	26.2	26.05	26.10	6.78	16.70	17.10	6.00	109	1282	358	4206
8.5	27.9	23.85	24.25	6.60	16.25	16.85	5.72	133	1136	437	3728
9.0	29.5	22.85	22.70	6.44	15.85	15.85	5.76	144	1471	474	4825
9.5	31.2	22.40	22.45	7.92	15.35	15.35	6.96	141	1042	464	3418
10.0	32.8	21.70	21.60	8.32	15.65	15.00	7.48	158	1190	519	3906
10.5	34.4	22.55	22.05	8.24	16.40	15.45	7.54	157	1429	515	4687
11.0	36.1	23.05	23.40	8.00	17.45	17.75	7.16	178	1190	583	3906
11.5	37.7	24.20	24.35	8.38	18.00	18.10	7.16	161	820	527	2689
12.0	39.4	24.95	24.95	8.28	19.15	19.25	7.12	174	862	571	2828
12.5	41.0	25.30	25.45	8.33	19.30	19.30	7.09	165	806	540	2646
13.0	42.7	25.55	25.55	8.25	18.55	18.35	6.98	141	787	462	2583
13.5	44.3	25.25	25.30	7.67	17.50	17.55	6.58	129	917	423	3010
14.0	45. 9	24.30	24.35	7.52	16.70	16.60	6.34	130	847	427	2780
14.5	47.6	23.05	23.15	7.24	15.70	15.70	6.04	135	833	443	2734
15.0	49.2	22.30	22.55	6.98	15.70	15.45	5.92	146	943	479	3095
15.5	50. 9	21.60	21.80	6.62	15.30	15.45	5.82	158	1250	519	4101
16.0	52.5	21.35	21.30	6.50	15.20	15.20	5.87	163	1587	536	5208
16.5	54.1	21.35	21.10	6.39	15.75	15.60	5.75	180	1563	591	5126
17.0	55.8	21.15	20.85	6.37	15.50	15.45	5.76	181	1639	594	5378
17.5	57.4	21.35	21.40	6.40	15.30	15.65	5.68	169	1389	556	4557
18.0	59.1	21.85	22.00	6.54	16.00	16.15	5.85	171	1449	561	4755
18.5	60.7	21.80	21.90	6.51	15.90	15.90	5.88	168	1587	551	5208
19.0	62.3	22.00	23.15	6.59	16.20	17.15	5.92	169	1493	556	4897
19.5	64.0	21.90	22.10	6.52	16.10	16.50	5.90	175	1613	576	5292
20.0	65.6	22.20	22.80	6.52	16.15	16.30	5.79	159	1370	523	4494
20.5	67.3	22.20	22.60	6.56	16.05	16.35	5.81	161	1333	529	4374
21.0	68.9	22.00	22.40	6.48	16.20	16.45	5.82	170	1515	558	4971
21.5	70.5	22.55	22.50	6.39	16.40	16.45	5.76	164	1587	538	5208
22.0	72.2	22.60	22.65	6.45	15.95	16.05	5.80	151	1538	495	5047
22.5	73.8	22.85	22.90	6.76	16.50	16.60	6.06	158	1429	519	4687
23.0	75.5	22.25	22.25	6.91	16.45	16.45	6.19	172	1389	566	4557
23.5	77.1	22.15	22.25	7.09	16.00	16.05	6.33	162	1316	531	4317
24.0	78.7	22.05	22.20	7.32	15.90	16.10	6.45	163	1149	536	3771
24.5	80.4	21.60	21.70	7.89	15.25	15.35	6.78	157	901	517	2956
25.0	82.0	21.55	21.80	7.91	15.00	15.40	6.77	154	877	507	2878
25.5	83.7	20.80	20.90	7.62	15.45	15.40	6.46	184	862	605	2828
26.0	85.3	20.30	20.55	7.47	14.65	15.10	6.37	180	909	591	2983
26.5	86.9	20.54	20.60	6.89	14.76	14.92	5.79	175	909	573	2983
27.0	88.6	20.40	20.50	7.07	14.86	14.90	5.82	180	800	589	2625
27.5	90.2	20.18	20.30	6.56	14.40	14.72	5.78	176	1282	578	4206
28.0	91.9	19.88	19.90	6.52	14.46	14.68	5.79	188	1370	617	4494
28.5	93.5	19.82	19.88	6.42	14.64	14.66	5.68	192	1351	631	4434
29.0	95.1	19.84	19.80	6.44	14.32	14.50	5.74	185	1429	606	4687
29.5	96.8	19.94	20.08	6.39	14.52	14.60	5.72	183	1493	602	4897
30.0	98.4	20.16	20.34	6.41	14.92	15.12	5.68	191	1370	627	4494
30.5	100.1	19.88	20.04	6.32	14.76	14.64	5.68	190	1562	624	5126
31.0	101.7	20.02	20.18	6.36	14.96	14.96	5.72	195	1562	638	5126

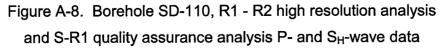
Table 10. Boring SD-110, Suspension R1-R2 depth, pick times, and velocities

De	pth			Pick	Times				Velo	ocity	
		Far-Hn	Far-Hr	Far-V	Near-Hn	Near-Hr	Near-V	V-S _H	V-P	V-S _H	V-P
(m)	(feet)	(millisec)	(millisec)	(millisec)	(millisec)	(millisec)	(millisec)	(m/sec)	(m/sec)	(ft/sec)	(ft/sec)
31.5	103.3	20.42	20.54	6.34	15.08	15.38	5.75	190	1695	625	5561
32.0	105.0	20.50	20.56	6.36	14.90	14.90	5.67	178	1449	583	4755
32.5	106.6	20.26	20.38	6.34	15.04	15.04	5.67	189	1493	621	4897
33.0	108.3	19.62	23.28	6.45	14.74	17.48	5.79	187	1515	614	4971
33.5	109.9	19.88	19.92	6.57	14.26	14.28	5.91	178	1515	583	4971
34.0	111.5	19.64	19.80	6.60	13.90	13.98	5.95	173	1538	568	5047
34.5	113.2	18.76	18.96	6.64	13.64	13.72	5.95	193	1449	633	4755
35.0	114.8	18.98	19.04	6.95	14.12	14.24	6.06	207	1124	679	3686
35.5	116.5	19.14	19.16	7.81	14.10	14.16	7.07	199	1351	654	4434
36.0	118.1	19.36	19.36	7.92	14.24	14.30	7.06	196	1163	645	3815
36.5	119.8	19.14	19.20	7.64	14.34	14.38	6.75	208	1124	682	3686
37.0	121.4	19.24	19.38	8.08	14.14	14.26	6.79	196	775	642	2543
37.5	123.0	19.62	19.70	7.55	14.46	14.54	6.63	194	1087	636	3566
38.0	124.7	19.42	19.50	7.76	14.42	14.50	6.51	200	800	656	2625
38.5	126.3	19.46	19.52	7.96	14.30	14.38	6.75	194	826	637	2711
39.0	128.0	19.50	19.60	7.32	14.42	14.50	6.28	196	962	645	3155
39.5	129.6	19.38	19.50	7.35	14.24	14.32	6.22	194	885	636	2903
40.0	131.2	19.58	19.68	7.10	14.36	14.48	6.05	192	952	630	3125
40.5	132.9	19.62	19.70	7.22	14.62	14.70	6.23	200	1010	656	3314
41.0	134.5	19.62	19.70	7.07	14.50	14.58	6.20	195	1149	641	3771
41.5	136.2	19.58	19.66	6.97	14.42	14.48	5.91	193	943	635	3095
42.0	137.8	19.58	19.66	6.68	14.52	14.58	5.64	197	962	647	3155
42.5	139.4	19.62	19.70	6.61	14.42	14.46	5.54	192	935	629	3066
43.0	141.1	20.16	20.24	6.54	14.88	14.94	5.82	189	1389	620	4557
43.5	142.7	20.10	20.18	6.52	14.98	15.04	5.81	195	1408	640	4621
44.0	144.4	19.94	19.96	6.49	14.88	14.88	5.72	197	1299	647	4261
44.5	146.0	19.96	20.04	6.52	15.04	15.12	5.68	203	1190	667	3906
45.0	147.6	20.14	20.22	6.48	14.88	14.94	5.63	190	1176	623	3860
45.5	149.3	20.54	20.62	6.21	14.86	14.94	5.49	176	1389	578	4557
46.0	150.9	20.52	20.56	6.37	14.94	15.02	5.63	180	1351	590	4434
46.5	152.6	20.56	20.64	6.36	15.20	15.28	5.62	187	1351	612	4434
47.0	154.2	20.35	20.45	6.26	15.00	15.10	5.54	187	1389	613	4557
47.5	155.8	20.80	20.90	6.35	15.35	15.45	5.62	183	1370	602	4494
48.0	157.5	21.15	21.30	6.71	15.85	15.95	5.86	188	1176	616	3860
48.5	159.1	20.55	20.65	7.15	15.25	15.40	6.40	190	1333	622	4374
49.0	160.8	20.25	20.30	7.00	15.35	15.45	6.07	205	1075	673	3528
49.5	162.4	20.14	20.22	7.05	15.92	15.98	6.10	236	1053	776	3454
50.0	164.0	20.20	20.30	6.37	15.22	15.32	5.51	201	1163	659	3815
50.5	165.7	20.50	20.60	6.27	14.52	14.58	5.50	167	1299	547	4261
51.0	167.3	19.98	20.00	6.13	14.04	14.06	5.49	168	1575	552	5167
51.5	169.0	18.86	18.88	6.12	13.48	13.62	5.48	188	1563	617	5126
52.0	170.6	18.08	18.08	6.12	12.96	13.04	5.47	197	1538	646	5047
52.5	172.2	17.62	17.68	6.10	12.74	12.86	5.45	206	1538	676	5047
53.0	173.9	17.08	17.16	6.09	12.48	12.50	5.44	216	1538	709	5047
53.5	175.5	16.82	16.84	6.08	12.40	12.46	5.44	227	1563	746	5126
54.0	177.2	16.30	16.26	6.05	12.36	12.34	5.42	254	1587	835	5208
54.5	178.8	16.08	16.14	6.02	12.22	12.28	5.39	259	1600	850	5249
55.0	180.4	15.78	15.84	5.99	12.10	12.16	5.37	272	1613	892	5292
55.5	182.1	15.44	15.56	5.96	11.72	11.82	5.35	268	1626	880	5335
56.0	183.7	15.70	15.74	5.96	11.86	11.92	5.34	261	1626	857	5335

Table 10, continued. Boring SD-110, Suspension R1-R2 depth, pick times, and velocities

De	pth	÷		Pick	Times				Velo	ocity	
		Far-Hn	Far-Hr	Far-V	Near-Hn	Near-Hr	Near-V	V-S _H	V-P	V-S _H	V-P
(m)	(feet)	(millisec)	(millisec)	(millisec)	(millisec)	(millisec)	(millisec)	(m/sec)	(m/sec)	(ft/sec)	(ft/sec)
56.5	185.4	16.00	15.96	5.97	12.14	12.22	5.36	263	1639	863	5378
57.0	187.0	15.94	16.00	5.98	12.26	12.28	5.39	270	1681	887	5514
57.5	188.6	16.04	16.12	5.97	12.82	12.88	5.40	310	1739	1016	5706
58.0	190.3	16.00	16.02	5.98	13.02	13.02	5.41	334	1739	1097	5706
58.5	191.9	16.72	16.78	6.04	13.60	13.70	5.43	323	1639	1058	5378
59.0	193.6	17.24	18.54	6.05	14.00	15.06	5.44	298	1639	976	5378
59.5	195.2	17.62	17.72	5.99	14.08	14.16	5.38	282	1639	924	5378
60.0	196.9	17.88	17.96	5.98	12.46	12.50	5.37	184	1626	603	5335
60.5	198.5	17.84	17.94	6.00	12.74	12.84	5.38	196	1613	643	5292
61.0	200.1	15.80	16.70	6.01	11.16	12.32	5.41	222	1653	727	5423
61.5	201.8	15.16	16.22	5.98	10.30	11.08	5.38	200	1681	656	5514
62.0	203.4	14.06	15.08	6.00	9.94	10.88	5.43	240	1739	789	5706
62.5	205.1	13.00	13.86	6.00	9.30	10.12	5.40	269	1681	882	5514
63.0	206.7	12.63	13.56	6.07	8.97	10.04	5.48	279	1681	914	5514
63.5	208.3	11.74	12.74	6.03	8.82	9.83	5.45	343	1724	1126	5657
64.0	210.0	11.52	12.48	6.00	8.70	9.57	5.42	349	1724	1145	5657
64.5	211.6	11.47	12.41	6.07	8.69	9.68	5.47	363	1667	1191	5468
65.0	213.3	11.53	12.54	6.00	8.92	9.90	5.40	381	1667	1250	5468
65.5	214.9	11.62	12.57	6.00	9.05	9.99	5.42	388	1724	1274	5657
66.0	216.5	11.50	12.47	6.01	8.98	9.92	5.42	394	1695	1294	5561
66.5	218.2	11.54	12.64	5.99	8.95	10.09	5.39	389	1653	1277	5423
67.0	219.8	11.48	12.37	5.99	8.77	9.61	5.39	366	1653	1200	5423
67.5	221.5	11.30	12.30	5.98	8.50	9.56	5.37	361	1639	1184	5378
68.0	223.1	11.80	11.92	6.00	9.24	9.38	5.38	392	1613	1287	5292
68.5	224.7	11.02	11.96	5.97	8.64	9.46	5.35	410	1613	1345	5292
69.0	226.4	11.06	11.92	5.96	8.52	9.46	5.34	400	1626	1312	5335
69.5	228.0	10.92	11.80	5.96	8.38	9.30	5.35	397	1639	1302	5378
70.0	229.7	10.72	11.70	5.96	8.38	9.26	5.36	418	1667	1373	5468
70.4	231.0	10.60	11.55	5.96	8.40	9.35	5.37	455	1695	1491	5561


Table 10, continued. Boring SD-110, Suspension R1-R2 depth, pick times, and velocities


APPENDIX A

SUSPENSION VELOCITY MEASUREMENT QUALITY ASSURANCE SUSPENSION SOURCE TO RECEIVER ANALYSIS RESULTS

VELOCITY (FEET/SECOND)

	Velo	ocity		Velo	ocity			Velo	ocity		Velo	ocity
Depth	V-S _H	V-p	Depth	V- S _H	V-p		epth	V-S _H	V-p	Depth	V- S _H	V-p
(meters)	(m/sec)	(m/sec)	(feet)	(ft/sec)	(ft/sec)		eters)	(m/sec)	(m/sec)	(feet)	(ft/sec)	
7.6		1039	24.8		3408		7.6	191	1223	90.5	627	4012
8.1	126	1092	26.5	414	3582	2	8.1	191	1529	92.1	628	5015
8.6	146	1189	28.1	480	3901	2	8.6	191	1466	93.7	628	4809
9.1	153	1338	29.8	503	4388	2	9.1	194	1497	95.4	637	4910
9.6	173	1390	31.4	569	4559	2	9.6	194	1518	97.0	637	4979
10.1	183	1446	33.0	599	4744		0.1	193	1551	98.7	635	5088
10.6	193	1408	34.7	633	4619	3	0.6	196	1551	100.3	644	5088
11.1	197	1274	36.3	647	4179	3	1.1	194	1497	101.9	637	4910
11.6	190	947	38.0	624	3107	3	1.6	189	1551	103.6	619	5088
12.1	178	829	39.6	583	2721		2.1	193	1518	105.2	633	4979
12.6	165	823	41.2	540	2700	3	2.6	191	1497	106.9	628	4910
13.1	153	899	42.9	503	2950	3	3.1	189	1497	108.5	621	4910
13.6	148	899	44.5	484	2950	3	3.6	191	1551	110.1	626	5088
14.1	145	955	46.2	474	3134		4.1	189	1518	111.8	619	4979
14.6	143	977	47.8	470	3206		4.6	191	1551	113.4	628	5088
15.1	152	1109	49.4	498	3638		5.1	197	1446	115.1	647	4744
15.6	163	1202	51.1	535	3944	1	5.6	217	1446	116.7	711	4744
16.1	178	1476	52.7	583	4842		6.1	202	1289	118.3	661	4230
16.6	178	1540	54.4	583	5051		6.6	202	1189	120.0	664	3901
17.1	184	1574	56.0	602	5162		7.1	205	1005	121.6	671	3296
17.6	183	1574	57.6	600	5162		7.6	202	866	123.3	661	2843
18.1	178	1551	59.3	583	5088		8.1	201	930	124.9	659	3053
18.6	181	1585	60.9	592	5201		8.6	202	930	126.5	664	3053
19.1	181	1712	62.6	595	5617		9.1	196	918	128.2	644	3013
19.6	172	1574	64.2	564	5162		9.6	200	1000	129.8	656	3281
20.1	175	1476	65.8	573	4842		0.1	200	915	131.5	657	3000
20.6	169	1466	67.5	553	4809		0.6	199	1065	133.1	651	3493
21.1	169	1466	6 9 .1	553	4809		1.1	202	1000	134.7	664	3281
21.6	169	1497	70.8	555	4910		1.6	199	1163	136.4	651	3816
22.1	169	1585	72.4	555	5201		2.1	194	1132	138.0	637	3715
22.6	167	1529	74.0	549	5015		2.6	198	1044	139.7	649	3425
23.1	169	1574	75.7	553	5162	4	3.1	199	1313	141.3	654	4307
23.6	173	1497	77.3	566	4910		3.6	196	1456	142.9	644	4776
24.1	166	1372	79.0	544	4501		4.1	199	1456	144.6	651	4776
24.6	169	1281	80.6	553	4204		4.6	191	1346	146.2	626	4416
25.1	174	1169	82.3	571	3837		5.1	189	1329	147.9	619	4361
25.6	174	1070	83.9	571	3510		5.6	189	1346	149.5	621	4416
26.1	183	863	85.5	600	2831	4	6.1	189	1313	151.1	619	4307
26.6	185	903	87.2	608	2962	4	6.6	190	1446	152.8	624	4744
27.1	188	1109	88.8	617	3638	4	7.1	191	1417	154.4	628	4650

Table A-8. Borehole SD-110, S - R1 quality assurance analysis P- and $\rm S_{H}$ -wave data

	Velo	ocity		Velo	ocity
Depth	V-S _H	V-p	Depth	V- S _H	V-p
(meters)	(m/sec)	(m/sec)	(feet)	(ft/sec)	(ft/sec)
47.6	190	1446	156.1	624	4744
48.1	186	1436	157.7	611	4712
48.6	188	1507	159.4	616	4944
49.1	182	1297	161.0	598	4255
49.6	177	1115	162.6	580	3657
50.1	183	1065	164.3	600	3493
50.6	181	1138	165.9	592	3735
51.1	171	1216	167.6	561	3989
51.6	181	1471	169.2	594	4825
52.1	196	1562	170.8	642	5125
52.6	205	1568	172.5	671	5144
53.1	217	1568	174.1	711	5144
53.6	232	1597	175.8	760	5240
54.1	235	1627	177.4	770	5339
54.6	239	1653	179.0	784	5422
55.1	242	1634	180.7	794	5360
55.6	247	1665	182.3	809	5464
56.1	249	1653	184.0	816	5422
56.6	254	1678	185.6	834	5507
57.1	259	1705	187.2	850	5594
57.6	259	1698	188.9	850	5572
58.1	255	1692	190.5	838	5550
58.6	245	1672	192.2	805	5485
59.1	235	1672	193.8	770	5485
59.6	228	1634	195.4	747	5360
60.1	217	1627	197.1	711	5339
60.6	209	1634	198.7	686	5360
61.1	208	1678	200.4	683	5507
61.6	233	1692	202.0	763	5550
62.1	239	1672	203.6	784	5485
62.6	285	1685	205.3	936	5528
63.1	320	1685	206.9	1049	5528
63.6	339	1653	208.6	1111	5422
64.1	377	1634	210.2	1236	5360
64.6	388	1640	211.8	1272	5380
65.1	405	1653	213.5	1330	5422
65.6	416	1665	215.1	1363	5464
66.1	412	1646	216.8	1353	5401
66.6	393	1653	218.4	1291	5422
67.1	388	1615	220.0	1272	5299

	Velo	ocity		Veid	ocity
Depth (meters)	V-S _H (m/sec)	V-p (m/sec)	Depth (feet)	V- S _H (ft/sec)	V-p (ft/sec)
67.6	393	1621	221.7	1291	5319
68.1	396	1621	223.3	1300	5319
68.6	416	1627	225.0	1363	5339
69.1	425	1634	226.6	1393	5360
69.6	442	1659	228.2	1451	5443
70.1	431	1634	229.9	1416	5360
70.6	439	1627	231.5	1439	5339
71.1	442	1627	233.2	1451	5339
71.6	446	1634	234.8	1463	5360
72.0	455	1659	236.1	1494	5443

Table A-8, continued. Borehole SD-110, S - R1 quality assurance analysis P- and $S_{\rm H}$ -wave data

.

APPENDIX D

GEOTECHNICAL LABORATORY TESTING

21-1-09910-091 095-BJ

APPENDIX D

GEOTECHNICAL LABORATORY TESTING

TABLE OF CONTENTS

LIST OF TABLES

Table No.

- D-1 Summary of Geotechnical Laboratory Testing West Seattle (18 sheets)
- D-2 Summary of Geotechnical Laboratory Testing SODO (34 sheets)
- D-3 Summary of Geotechnical Laboratory Testing Downtown (4 sheets)
- D-4 Summary of Geotechnical Laboratory Testing Seattle Center (5 sheets)
- D-5 Summary of Geotechnical Laboratory Testing Interbay (18 sheets)
- D-6 Summary of Geotechnical Laboratory Testing Ballard Crossing (5 sheets)
- D-7 Summary of Geotechnical Laboratory Testing Ballard (6 sheets)

LIST OF SUBAPPENDICES

- D.1 Grain Size Distribution
- D.2 Atterberg Limits
- D.3 Corrosion Tests
- D.4 Consolidation-Undrained Triaxial Compression Tests
- D.5 Cyclic Shear Tests
- D.6 One-Dimensional Consolidation Tests

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

9	sjsəj					İ															ļ						1	-			
ormed	Corrosion Shear	<u> </u>																		 											
Perf	οήονζ																														
Other Tests Performed ⁶	-losno Dation																														
Othe	lriaxial fest																														
2	Non- Plastic																														
Plasticity ⁵	Plastic Limit																														
	Liquid Limit																														
ses ⁴	<2μm (%)																							-							
Grain-Size Analyses ⁴	Fines		}		45.2				95.4	7.0				8.1				28.0	54.3		59.9								 	; 	
in-Size	Sand													91.9																	
Gra	Gravel (%)													0.0																	
	Wet Unit Weight (ncf)]
		31.7	90.2	34.6	36.2	32.7	27.0	25.8	35.7	24.8	25.8	39.3	27.9	27.2	29.1	36.7	33.5	34.7	33.5	28.8	33.8	29.6	34.3	30.6	29.4	25.9	29.1	30.6	35.7	35.5	34.5
	Geologic Water Unit ³ Content	HF	HF	HF	HF	HA	HA	HA	HE	HA	НА	HA	HA	HA	HA	HA	HE	HE	HE	HA	HA										
•	USCS ²	SP-SM	SM	SM	SM	SP	SP	SP	ML	SP	SP	, ML,	SP-SM	SP-SM	SP-SM	SM	SM	SP-SM	ML	SM	SM	SM	ML	ML	SP-SM	SP-SM	ML	ML	ML	ML	ML
	Blow Count (hlows/foot)		7	1	2	15	19	23	4	20	23	5	24	38	25	24	23	24	11	21	12	14	8	6	33	38	27	25	33	23	15
	Sample Type ¹	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT
-	Sample No.	-	2	3	4	5	6	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
	Top Depth (feet)	10.0	12.5	15.0	17.5	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	60.0	65.0	70.0	75.0	80.0	85.0	90.0	95.0	100.0	105.0	110.0	115.0	120.0	125.0	130.0	135.0	140.0	145.0
•	Boring No.	SD-101	SD-101	SD-101	SD-101	SD-101	SD-101	SD-101	SD-101	SD-101	SD-101	SD-101	SD-101	SD-101	SD-101	SD-101	SD-101	SD-101	SD-101	SD-101	SD-101	SD-101	SD-101	SD-101	SD-101	SD-101	SD-101	SD-101	SD-101	SD-101	SD-101

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 1 of 36 (see page 36 for notes)

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

^o d ⁶	Corrosion Tests			-				1										-													
Other Tests Performed ⁶	Cyclic Shear													t ;																	
Tests P	Consol- idation																														
Other	Triaxial Jest																	-					1								
	Non- Plastic																														
Plasticity ⁵	Plastic Limit		27																												
	Limit		35																												
es.4	2µш (%)			-																											
Grain-Size Analyses ⁴	Fines (%)											52.3														8.5					
in-Size	Sand (%)											29.1														91.5					
	Gravel (%)											18.6														0.0					
	Wet Unit (pcf)			117																											
	Water Content (%)		38.3	29.5	10.5	7.3	9.2	8.2	8.3	11.3	7.2	11.6	10.0	10.2	8.0	18.5	23.7	27.6	13.3	18.6	32.4	20.8	19.6	34.2	29.6	28.6	30.0	27.3	27.9	37.1	33.2
	Geologic Unit ³	HE	HE	HE	QPGM	HF	HF	HF	ΗF	HF	HF	HF	HF	HE	HA																
· . · .	uscs ²	ML	ML	ML	sc	sc	sc	SM	SM	ML	ML	ML	ML		SM	SM	SP-SM	SP-SM	GM	ML	GP-GM	GP-GM	GP-GM	ML	SP-SM	SP-SM	SP-SM	SP-SM	SP-SM	SM	SM
	Blow Count (blows/foot)	8	0		50/4"	92	50/3"	50/3"	50/4"	84/11"	50/4"	50/4"	50/5"	50/5"	100/2"	6	7	8	15	7	4	7	5	2	19	25	21	25	25	16	21
	Sample Type ¹	SPT	SPT	OSTER	SPT																										
· ·	Sample No.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	1	2	٣	4	5	7	8	6	10	11	12	13	14	15	16	17
	Top Depth (feet)	150.0	155.0	157.5	160.0	165.0	170.0	175.0	180.0	185.0	190.0	195.0	200.0	205.0	210.0	5.0	7.5	10.0	12.5	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	60.0	65.0	70.0
	Boring No.	SD-101	SD-102																												

4/1/2004-Lab Sum SD.xls-MAN

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 2 of 36 (see page 36 for notes)

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

	2125J			-					•																	1					
rmed	Corrosion			 ;																											
Other Tests Performed ⁶	Shear Сусис																														
r Tests	Consol- idation																														
Othe	Triaxial Test						·	• -																							
	Non- Plastic																												ЧŅ		
Plasticity ⁵	Plastic Limit																						28						0		
ł	Liquid																						40						0		
SS ⁴	шп (%								, ,														23.5								
Grain-Size Analyses ⁴	Fines (%)				35.0				65.8														99.2								
in-Size	Sand (%)				65.0																										
Gra	Gravel (%)				0.0																										
	Wet Unit Weight (pcf)																														
	Water Content (%)	30.9	32.7	29.6	32.6	32.3	31.9	34.7	31.0	29.5	31.4	30.2	28.8	31.6	32.9	27.0	33.2	33.8	34.8	34.9	31.6	42.7	43.0	41.4	12.1	20.2	8.7	23.2	19.2	27.0	14.5
	Geologic Unit ³	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HE	QPGT	QPGM	QPGM	QPGM	QPGM	QPGM	QPGM							
	USCS ²	SM	SM	SM	SM	SM	SM	ML	ML	ML	ML	SP	SM	SM	SM	SP	ML	SM	ML	ML	ML	ML	ML	ML							
	Blow Count (blows/foot)	21	18	23	19	19	17	11	24	27	26	29	36	31	33	60	6	17	39	13	13	0	0	11	50/4"	50/5"	50/4"	50/5"	50/6"	50/5"	50/5"
	Sample Type ¹	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT
	Sample No.	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
	Top Depth (feet)	75.0	80.0	85.0	90.0	95.0	100.0	105.0	110.0	115.0	120.0	125.0	130.0	135.0	140.0	145.0	150.0	155.0	160.0	165.0	170.0	175.0	180.0	185.0	190.0	195.0	200.0	205.0	210.0	215.0	220.0
	Boring No.	SD-102	SD-102	SD-102	SD-102	SD-102	SD-102	SD-102	SD-102	SD-102	SD-102	SD-102	SD-102	SD-102	SD-102	SD-102	SD-102	SD-102	SD-102	SD-102	SD-102	SD-102	SD-102	SD-102	SD-102	SD-102	SD-102	SD-102	SD-102	SD-102	SD-102

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 3 of 36 (see page 36 for notes)

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

[.] 	stes F																		_	ŀ					1						x
rmed	Shear Corrosion																														
Perfo	Shear																														
Other Tests Performed ⁶	Consol- Idation																														
Other	Test																														
	i :5 Triaxial													 								 									
· ·	Non- Plastic																														
Plasticity ⁵	Plastic Limit											22																			
	Liquid											25																			
s.	2μm (%)																														
Grain-Size Analyses ⁴	Fines (%)				6.7									18.2	······ ·				12.8						53.8			26.6			
-Size	Sand (%)				93.3														87.2												
Grain	Gravel S				0.0														0.0												
	en Gr				0														0												
	Wet Unit Weight (pcf)																														
	Water Content (%)		29.6	29.6	30.8	32.5	58.1	51.7	33.7	27.9	29.9	38.6	29.1	34.3	40.9	30.8	43.0	36.5	32.0	29.4	27.5	28.8	31.5	26.9	35.6	34.3	32.8	29.6	36.4	28.7	37.1
	Geologic Unit	QPGM	HF	HA	HA	HE	HA	HA	HA	HA	HE	HA	HA	HA	ΗA	HA	HE														
	uscs ²	ML	SP-SM	SP-SM	SP-SM	SP-SM	CL	CL	CL	SP-SM	SP-SM	ML	SP-SM	SP-SM	SP-SM	SP-SM	ML	SP-SM	SM	SM	SM	SM	SM	SM	ML						
	Blów Count (blows/foot)	50/6"	3		6	4	1	12	2		18 5	0	25	7	13 5	10	1	23	17	20	25	26	16	20	6	17	13	21	16	18	10
	Sample Type ¹	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT													
	Sample No.	48		1	2	3	4	5	6	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
	Top Depth (feet)	225.0	7.0	7.5	10.0	12.5	15.0	17.5	20.0	22.5	27.5	32.5	37.5	42.5	47.5	52.5	57.5	62.5	67.5	72.5	77.5	82.5	87.5	92.5	97.5	102.5	107.5	112.5	117.5	122.5	127.5
	Boring No.	SD-102	SD-103	SD-103	SD-103	SD-103	SD-103	SD-103	SD-103	SD-103	SD-103	SD-103	SD-103	SD-103	SD-103	SD-103	SD-103	SD-103	SD-103												

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 4 of 36 (see page 36 for notes)

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

ed ⁶	Corrosion Tests															_															
Other Tests Performed ⁶	Cyclic Shear													×							×						•				
r Tests]	-losno) idation																														
Othe	Triaxial Test																														
s	Non- Plastic																														
Plasticity⁵	Plastic Limit								26				29		36					32											
L.	Liquid								31				34		51					55									_		
es ⁴	шп) %)									10.8																					
Grain-Size Analyses ⁴	Sand Fines (%)									90.3																					7.0
ain-Size	Sand (%)																						_								92.8
Gr.	Gravel (%)																														0.2
	Wet Unit Weight (pcf)																														
	Water Content (%)	30.2	31.8	34.0	30.5	44.8	33.8	25.4	35.1	35.0	34.1	30.4	39.3		45.3	48.4	48.7	32.8	40.8	45.5		47.8	14.3	21.1	21.6	20.6	23.7	23.1	24.0	28.0	32.6
	Geologic Unit ³	HA	HE	QPGM	HF																										
	uscs ²	SM	ML	ML	ML	ML	ML	ML	ΗН	MH	MH	ΗН	MH	MH	ΜН	НН	SC	CH	CH	CH	IJ	CL	CL	CL	SP-SM						
	Blow Count (blows/foot)	31	19	21	25	25	29	34	2	1	Э	5	0	•	ŝ	2	1	2	3	0	-	4	86/9"	31	61	65	65	70	69	88	3
	Sample Type ¹	SPT	OSTER	SPT	SPT	SPT	SPT	SPT	SPT	OSTER	SPT																				
	Sample No.	29	30	31	32	32	33	34	35	36	37	38	40	42	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	
•	Top Depth (feet)	132.5	137.5	142.5	147.5	148.0	152.5	157.5	162.5	167.5	172.5	177.5	182.5	190.0	197.5	202.5	207.5	212.5	217.5	222.5	225.0	227.5	232.5	237.5	242.5	247.5	252.5	257.5	262.5	267.5	7.2
	Boring No.	SD-103	SD-104																												

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 5 of 36 (see page 36 for notes)

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

	sts	эT							-			[ļ					×						<u> </u>		
rmed	поіготт				 				 				-			-				-										<u> </u>		
Perfo	clic ear	чs (Э																														
Other Tests Performed ⁶	nsol- noiti	pi																														
Other	- Iose JS	эT											-							-												
	leixei	ΥĽ										 		 								 								 		
2	Non- Plastic	:" 																														
Plasticity ⁵	Plastic Limit					17																										
đ	Liquid Limit					27																										
		(%)						, 																								
Grain-Size Analyses ⁴		· (%)									6.2																	27.3			!	
-Size A		(%)				[93.8																					
Grain		 																														
	Gravel	(%)									0.1																					_
	Wet Unit Weight	(bcf)																														
		· (%)		56.1	43.1	43.7	29.0	35.0	30.0	29.9	24.3	25.0	24.3	56.5	31.8	39.1	23.9	33.5	32.5	37.6	32.9	32.2	29.5	31.5	41.6	34.7	33.0	31.6	36.9	31.2	35.8	34.0
	Geologic Unit ³		HF	HF	HF	HF	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA
	USCS ²		SP-SM	SP-SM	CL	CL	SP-SM	SP-SM	SP-SM	SP-SM	SP-SM	SP-SM	SP-SM	SP-SM	SP-SM	SP-SM	SP	SP	SP	SM	SM	SM	SM	SM	SM	ML	ML	ML	ML	ML	ML	ML
· · ·		00()	S	S			S	0	0	S	S					0																
	Blow Count	(blows/foot)	4	0	0	1	ı	8	13	18	27	28	26	10	10	21	38	20	26	18	16	22	28	25	26	11	11	31	31	27	27	28
	Sample Type ¹		SPT	SPT	SPT	OSTER	OSTER	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT
:	Sample No.		2	З	3		4	S	6	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	23	24	24	25	25	26
	Top	(feet) :	10.0	12.5	13.2	15.1	15.5	17.5	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	60.0	65.0	70.0	75.0	80.0	85.0	90.0	95.0	100.0	105.0	105.8	110.0	110.5	115.0	115.6	120.0
	Boring No.		SD-104	SD-104	SD-104	SD-104	SD-104	SD-104	SD-104	SD-104	SD-104	SD-104	SD-104	SD-104	SD-104	SD-104	SD-104	SD-104	SD-104	SD-104	SD-104	SD-104	SD-104	SD-104	SD-104	SD-104	SD-104	SD-104	SD-104	SD-104	SD-104	SD-104

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 6 of 36 (see page 36 for notes)

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

ed ⁶	noizo	Corre	-										-																			
Other Tests Performed ⁶		Sheal Cycli																											1			
r Tests]		cons idatic																			×											
Othe		Triax Test																														
	Non-	Plastic																				ď										
Plasticity ⁵	Plastic	Limit																				0							35			
•	Liquid	Limit																				0							44			
es.4		<2μm (%)																														
Grain-Size Analyses ⁴		Fines (%)																														
ain-Size		Sand (%)																														
5		Gravel (%)																														
	Wet Unit	Weight (pcf)														114						114						:				
		Content (%)	36.6	36.9	32.4	33.9	32.3	28.7	32.4	31.0	25.3	27.5	39.7	40.1	31.7	33.0	30.1	33.4	34.3	32.8	47.0	34.4	29.9	36.6	35.1	40.5	45.6	42.1	43.6	45.1	44.5	32.1
	. U	Unit	HA	HE																												
· · ·		USCS ²	ML	ΗМ	НМ	MН	HМ	ΗМ	HM																							
	Blow	Count (blows/foot)	11	21	21	14	14	31	31	38	41	21	21	6	r	1	18	1	•	12	•	r	16	16	7	6	•	1	3	3	2	1
	Sample	Type ¹	SPT	OSTER	OSTER	SPT	OSTER	OSTER	SPT	OSTER	OSTER	SPT	SPT	SPT	SPT	OSTER	OSTER	SPT	SPT	SPT	OSTER											
	Sample	No.	27	28	28	29	29	30	30	31	32	33	33	34	35	35	36	37	37	38	39	39	40	41	42	43	44	44	45	45	46	47
· . 	Top	Depth (feet)	125.0	130.0	130.8	135.5	136.0	140.5	141.0	145.0	150.0	155.0	155.5	160.0	162.5	164.3	165.0	167.6	168.3	170.0	172.5	173.1	175.0	180.0	185.0	190.0	192.7	193.7	195.0	196.1	200.0	202.5
	Boring	No.	SD-104																													

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 7 of 36 (see page 36 for notes)

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

d ⁶	noiso	Tests																		1							-					
Other Tests Performed ⁶	10130	eəys																							-							;
ests Pe) uo	idatio Cyeli																-						-							-	
ther T	-lo	Test Cons			X									 																-		
	1017	(Girt						 									×					 			 			-		$ \times$	×	
د	Non-	Plastic																														
Plasticity ⁵	Plastic	Limit			36				28								26		29												30	
P	Liquid	Limit	·		67				44								33		33		• · —										55	
		2μm (%)													1																	
Grain-Size Analyses ⁴		Fines (%)																	·											<u>!</u>		
n-Size		Sand (%)																										<i>·</i>				
Grai		Gravel (%)																														
	Wet Unit	Weight ((pcf)					112	111											<u> </u>													
	Water	Content (%)	49.8	52.2	52.1	52.3	35.3	34.9	38.8	39.9	32.2	33.3	39.4	35.9	35.0	39.9	35.6	40.3	38.1	38.8	43.3	43.2	40.4	76.6	41.2	44.0	41.9	47.8	41.6	34.2	46.2	45.7
		Unit	HE	HE	HE	HE	HE	HE	HE	HE	HE	HE	HE	HA	HE	HE	HE	HE	HE	HE	HE	HE	HE	HE	HE	HE	HE	HE	HE	HE	HE	HE
		USCS ⁴	HM_	MH	MH	MH	ML	ML	ML	ML	ML	ML	ML	SM	ML	ΨΓ	ML	ML	ML	ML	ML	ML	ML	ML	ML	ML	ML	ΗМ	ΗМ	ΜН	ΗН	ΗM
	Blow	Count (blows/foot)	2	1	1	2	1	1	1	1		1	7	1	22	1	I	1	5	1	4	2	2	r	-	I	1	1	r	15	t	,
	Sample	Type'	SPT	OSTER	OSTER	SPT	OSTER	OSTER	SPT	SPT	OSTER	OSTER	SPT	OSTER	SPT	OSTER	OSTER	OSTER	SPT	OSTER	OSTER	SPT	SPT	OSTER	OSTER	OSTER	SPT	OSTER	OSTER	SPT	OSTER	OSTER
-	Sample	No.	48	49	49	50	51	51	52	52	1	1	2	с	4	5	5	5	6	7	7	8	8	6	6	6	10	11	11	12	13	13
	Top	Depth (feet)	205.0	208.1	209.0	210.0	215.4	216.5	217.5	218.5	165.4	166.0	170.0	175.1	180.0	182.7	183.3	183.9	185.0	187.6	188.9	190.0	191.2	192.7	193.7	194.2	195.0	197.6	199.1	200.0	202.5	203.1
	60	No.	SD-104	SD-104	SD-104	SD-104	SD-104	SD-104	SD-104	SD-104	SD-104A	SD-104A	SD-104A	SD-104A	SD-104A	SD-104A	SD-104A	SD-104A	SD-104A	SD-104A	SD-104A	SD-104A	SD-104A	SD-104A								

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 8 of 36 (see page 36 for notes)

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

dو و	Corrosion Tests				_																							_			
Other Tests Performed ⁶	Cyclic Shear																														
Tests P	Consol- idation												• /																		
Other	Triaxial Test				х													×	•			×	×								
5	Non- Plastic																														
Plasticity⁵	Plastic Limit	31			35													35			37	35									
P	Limit	55			69													63			73	71							1		
S ⁴	u (%						27.9														!							, 			
Grain-Size Analyses ⁴	Fines (%)						99.4																							64.0	
in-Size	Sand (%)																													28.4	
Gr	Gravel (%)																													7.6	
	Wet Unit Weight (pcf)																														
	Water Content (%)	47.4	45.6	50.1	52.9	50.7	57.0	48.2	44.1	41.9	39.9	36.8	37.9	43.0	39.8	36.4	53.6	50.0	52.3	59.4	53.1	54.2	51.3	50.9	45.3	36.0	39.4	39.5	17.3	12.4	15.7
	Geologic Unit ³	HE	QPGM	QPGM	QPGM																										
	USCS ²	НМ	MH	MH	MH	ΗН	ΜН	MH	ΗН	HH	ML	HM	ΗМ	HM	HH	HM	HМ	HM	МH	HW	HM	ΗМ	Э	ML	ML						
	Blow Count (blows/foot)	1		1	-		2	•	1	1	ı	•	12	1	1	ı	7	1	ı	1	0	-	1	6	4	15	15	65/11.5"	50/5"	50/5"	50/5"
	Sample Type ¹	OSTER	OSTER	SPT	OSTER	OSTER	OSTER	SPT	OSTER	OSTER	SPT	SPT	OSTER	OSTER	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT									
	Sample No.	13	13	14	15	15	16	17	17	18	19	19	20	21	21	21	22	23	23	24	25	26	26	27	28	29	29	30	31	32	33
	Top Depth (feet)	203.3	203.8	205.0	208.1	208.7	210.0	213.4	214.1	215.0	218.1	218.7	219.5	222.9	223.4	224.3	225.0	228.3	228.9	229.5	235.0	240.6	241.2	242.0	245.0	250.0	250.5	255.0	260.0	265.0	270.0
	Boring No.	SD-104A	SD-104A	SD-104A	SD-104A																										

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 9 of 36 (see page 36 for notes)

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

ed ⁶	Corrosion Tests																														
Other Tests Performed ⁶	Cyclic Cyclic	 																								-					
Tests P	-loznoЭ idation																												 		
Other	Triaxial Test						<u>}</u>																							 	
2	Non- Plastic										• 						 				<u> </u>	<u>,</u>									
Plasticity ⁵	Plastic Limit																														
P	Limit						1																				İ				
s ⁺	≪2µm (%)													 			1												! 		
Grain-Size Analyses	Fines (%)							6.3						; ; 	9.9								56.3								9.0
iin-Size	Sand (%)							93.4							89.9																
Gr	Gravel (%)							0.4							0.2																
	Wet Unit Weight (pcf)										8		.																		
	Water Content (%)	21.0	24.4	27.2	54.9	33.0	34.1	30.9	28.3	38.3	40.1	26.7	31.5	22.2	33.3	35.0	26.8	32.3	34.1	36.3	35.4	44.4	33.2	32.3	23.6	27.2	35.9	27.3	52.9	24.9	23.5
	Geologic Unit ³	QPGL	QPGL	HF	HF	HA	HA	HA	HA	HE	HE	HA	HA	HA	HA	HA	HA	HE	HE	HE	HE	HA	HA	HA	HA	HA	HA	HA	HE	НА	HA
• • • •	USCS ²	ML	ML	SP-SM	SM	SP-SM	SP-SM	SP-SM	SP-SM	ML	ML	SM	SP-SM	SP-SM	SP-SM	SM	SM	ML	ML	ML	ML	SM	SM	SM	SP-SM	SP-SM	SP-SM	SP-SM	ML	SP-SM	SP-SM
	Blow Count (blows/foot)	50/6"	50/3"	7	2	10	6	16	14	0/18"	0/18"	14	21	38	24	15	13	14	4	6	1	14	6	22	28	14	14	20	7	30	27
	Sample Type ^t	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT
	Sample No.	34	35	1	4	6	7	8	6	10	10	12	15	16	17	18	19	20	21	22	23	24	25	26	27	28	28	29	30	31	32
	Top Depth (feet)	275.0	280.0	6.5	15.0	20.0	22.5	27.5	32.5	37.5	37.6	42.5	57.5	62.5	67.5	72.5	77.5	82.5	87.5	92.5	97.5	102.5	107.5	112.5	117.5	122.5	123.5	127.5	132.5	137.5	142.5
	Boring No.	SD-104A	SD-104A	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 10 of 36 (see page 36 for notes)

ge .	Corrosion Tests									;				-				İ			1								1		
Other Tests Performed ⁶	Cyclic Shear																													-	
Tests P	Consol- idation															:															
Other	Triaxial Test																				 										
	Non- Plastic														<u> </u>	1						ĺ			<u> </u>				-		
Plasticity ⁵	Plastic Limit							28			-					32								29							
PIC STREET	Limit							37								41								58		-					
5 4	2μm (%)					10.7	•				<u> </u> 							<u>.</u>						24.2				!			;
Analyse	Fines (%)					96.7																		93.8							
Grain-Size Analyses ⁴	Sand (%)																												1		
Ð	Gravel (%)																														
	Wet Unit Weight (pcf)																			106											
	Water Content (%)	33.2	37.4	34.1	29.5	38.4	30.7	33.1	36.3	32.8	37.1	34.6	31.4	35.5	38.7	47.6	43.3	44.9	40.0	48.0	47.6	50.5	51.6	40.8	41.7	34.3	47.0	21.1	22.0	22.7	26.3
	Geologic Unit ³	HA	HE	HE	HE	HE	HA	HE	HE	HE	HE	HE	HE	HE	HE	HE	HE	HE	HE	HE	HE	HE	HE	HE	HE	HE	HE	QPGL	QPGL	QPGL	QPGL
	USCS ²	SP-SM	ML	ML	ML	ML	SM	ML	ML	ML	ML	ML	ML	ML	ML	ML	ML	ML	ML	ML	ML	HM	HM	MH	HH	HМ	НН	ML	ML	ML	ML
	Blow Count (blows/foot)	19	11	11	16	16	26	I	1	14	14	4	4	1	1	0	0	2	2	1	1	2	2	3	ю	3	3	86	67	82	85
	Sample Type ¹	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	OSTER	OSTER	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT									
	Sample No.	33	34	34	35	35	36	37	37	38	38	39	39	40	40	41	41	42	42	43	43	44	44	45	45	46	47	49	50	51	52
	Top Depth (feet)	147.5	152.5	153.3	157.5	158.0	162.5	167.5	168.0	172.5	173.0	177.5	178.5	182.5	183.5	187.5	188.0	192.5	193.5	197.6	198.3	202.5	203.5	207.5	208.5	212.5	217.5	227.5	232.5	237.5	242.5
	Boring No.	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105	SD-105

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 11 of 36 (see page 36 for notes)

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

<u>ا</u> و	Tests								İ																1						
Other Tests Performed ⁶	Corrosion Shear			 				 				-																		 	
s Perf	Cyclic																									-					
r Test	Consol- idation																			Ì											
Othe	lsixsitT																														
, 2 S	Non- Plastic																														
Plasticity ⁵	Plastic Limit											28								 									1	 	
	Liquid Limit											36																			
ses ⁴	∠2μm (%)																												 		
Grain-Size Analyses ⁴	Fines (%)					4.7		7.1										4.9						6.5							
n-Size	Sand (%)					95.3		92.9				·						95.1						93.5							
Graii	Gravel (%)			• • • • •		0.0		0.0					 					0.0						0.0	 						
	Wet Unit Weight ((pcf)																								<u>;</u>						
	Water Content V	16.6	29.8	96.1	29.4	26.7	39.1	33.2	37.7	37.3	34.5	40.4	45.2	44.2	41.2	36.9	24.7	23.1	30.9	37.8	30.6	29.4	28.6	23.0	30.3	25.5	28.7	28.9	27.6	28.4	29.1
			6	6	5	2	Ω.	ĉ	3	ĉ	ά	4	4	4	4	m	5	5	ς Γ	m	ς.	2	5	7	ŝ	2	5	7	5	5	2
	Geologic Unif ³	HF	ΉF	HF	HF	HA	HA	ΗA	HA	ΗA	HA	HE	HE	HE	HE	HE	HA	HA	HA	HA	HA	ΗA	HA	HA	HA	HA	HA	ΗA	HA	HA	HA
 	USCS ²	SP-SM	SP-SM	SP-SM	SP-SM	SP	SM	SP-SM	SP-SM	SP-SM	SP-SM	ML	ML	ML	ML	ML	SP	SP	SP	SM	SP-SM	SP-SM	SP-SM	SP-SM	SP-SM	SP-SM	SP-SM	SM	SM	SP-SM	SP-SM
	Blow Count (blows/foot)	12	5	m	15	23	8	18	16	16	17	2	ı	•	0	12	12	43	25	11	31	25	33	56	27	36	35	25	23	20	21
	Sample Type ¹	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	OSTER	OSTER	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT
: .	Sample No.	-	2	4	7	8	6	10	11	11	12	13	14	14	15	16	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
	Top Depth (feet)	7.2	10.0	15.0	25.0	30.0	35.0	40.0	45.0	45.7	50.0	55.0	58.6	59.0	60.0	65.0	66.0	70.0	75.0	80.0	85.0	90.0	95.0	100.0	105.0	110.0	115.0	120.0	125.0	130.0	135.0
	Boring No.	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 12 of 36 (see page 36 for notes)

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

ned ⁶	Corrosion Cests														-																×
Other Tests Performed ⁶	урсяг Сусніс	· II																													
er Tests	-losno ation	_11																													
Oth	lsixsir]																														
5	Non- Plastic																					l									
Plasticity ⁵	Plastic Limit				29								31		33			31			21						ļ				
F	Liquid Limit	-			31								51		49			65			37										
est	⊂2µm (%)							•										28.7		14.6											
Grain-Size Analyses ⁴	Sand Fines				76.2					1								99.4		93.3										3.3	
ain-Size	Sand (%)																			4.4										96.7	
G	Gravel (%)																			2.3										0.0	
	Wet Unit Weight Gravel (pcf) (%)																														
	Water Content (%)	31.1	30.4	38.4	33.0	30.8	37.6	29.7	28.9	32.2	33.4	38.6	41.3	44.4	44.6	38.8	50.7	49.7	53.4	27.6	25.3	27.9	24.0	24.4	25.0	25.5	18.2	23.4	20.7	18.7	26.4
	Geologic Water Unit ³ Content (%)	HE	HE	HE	HE	HE	HE	HE	HE	HE	HE	HE	HE	HE	HE	HE	HE	HE	HE	QVRL	QVRL	QVRL	QPGL	HF	HF						
· · ·	USCS ²	ML	CH	CH	CH	CH	CH	CL	СĽ	CL	CL	СГ	ರ	ц	С	Ъ	CL	dS	SP												
	Blow Count (blows/foot)	21	13	-	22	8	19	28	5	15	16	4	0	4	4	5	5	З	7	14	14	61	61	50/6"	50/5"	50/5"	50/5"	50/6"	50/6"	3	L
	Sample Type ¹	SPT	SPT	OSTER	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT
	Sample No.	30	31	32	33	34	35	36	37	38	39	40	41	42	42	43	43	44	45	46	46	47	47	48	49	50	51	52	52	1	2
	Top Depth (feet)	135.8	140.0	145.6	147.0	150.0	155.0	160.0	165.0	170.0	175.0	180.0	185.0	190.0	191.0	195.0	196.0	200.0	205.0	210.0	210.6	215.0	215.8	220.0	225.0	230.0	235.0	240.0	240.9	7.2	10.0
	Boring No.	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-106	SD-107	SD-107

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 13 of 36 (see page 36 for notes)

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

			1.000	Grain-	Grain-Size Analyses ⁴	lyses		Plasticity ⁵		Other T	Other Tests Performed ⁶	'med ⁶
	Geologic	Water	Wet Unit					Plastic	Non		, Q	
USCS ²	 Unit ³	Content (%)	Weight (pcf)	Gravel (%)	· · · · · · · · · · · · · · · · · · ·	Fines <2μm (%) (%)) Limit	Limit	144	Triax Test Consc	idatio Cyclid Shear	Corro Tests
SP	HF	26.3										
ß	HF	26.1										
ML	HA	33.9										
SP	 HA	27.7										
SP	HA	27.4			4.2	5						
SP	HA	23.9										
SP	HA	24.2								_		
SM	HA	32.9			1	9.						
SM	HA	24.6		-								
SP-SM	HA	27.8										
ML	HA	36.5										
ML	HA	36.4										
ML	HA	32.0			50.2	17						
ML	HA	38.3			86.9	6						
ML	HA						32	26				
ML	HA	37.2	111									
ML	HA	32.9										
ML	HE	35.0					34	26				
MĽ	HE	34.2										
SP	HA	30.0										Í
SP	HA	25.3										
SM	HA	32.4										
SM	HA	33.9			23.0	0						
SM	HA	29.7										
SM	HA	29.0										
ML	HA	31.8			51.2	2 68						
ML	HA	30.8										
SP	HA	28.1									-	
SP	HA	26.3									-	
SM	HA	29.8										

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 14 of 36 (see page 36 for notes)

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

	[]					1									Γ					$\overline{ }$
rmed	noisor10		×	'																											
Perfo	Shear Cyclic																														
Other Tests Performed ⁶	Consol- Consol-	[
ther	Test Test	-	-	+		+		-				-		-	-			-		-	-		-		-						
0 		-			<u> </u>		<u> </u>																		 !		ļ				
,s	Non- Plastic	-																													
Plasticity ⁵	Plastic Limit	·													31																
	Liquid														48										ļ						
ses ⁴	(%)	, , ,													15.8																
Grain-Size Analyses ⁴	Fines (%)	34.2				-									9.66		 														5.2
ain-Siz	Sand (%)																														
<u>-</u> 5	Gravel (%)																														
	Wet Unit Weight (pcf)																														
	Water Content (%)	33.9	28.4	28.7	31.4	27.4	31.2	30.9	29.2	34.8	35.3	35.5	43.8	40.6	43.0	46.4	27.0	24.9	26.3	23.4	24.2	26.7	23.9	27.3	31.9	26.7	71.0	156.6	31.9	33.2	27.4
	Geologic Unit ³	HA	HA	HA	HA	HA	HE	HE	HE	HE	HE	HE	HE	HE	HE	HE	HRW	HRW	QPGM	QPGM	QPGM	QPGL	QPGL	QPGL	QPGL	HF	HF	HF	HA	HA	HA
	uscs ²	SM	SM	SM	ML	ML	ML	ML	ML	ML	ML	ML	ML	ML	ML	ML	CL	CL	C	cL	CL	CL	CL	CL	CL	SP-SM	SM	SM	SP-SM	SP-SM	SP-SM
	Blow Count (blows/foot)	30	28	29	29	30	16	16	21	11	12	12	I	1	8	2/12"	28	51	43	43	72/11"	72/11"	50/6"	50/6"	50/6"	6	5	2	11		14
	Sample Type ¹	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	OSTER	OSTER	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	3SS	SPT	SPT	SPT	SPT
	Sample No.	31	32	33	33	34	36	36	37	38	39	39	40	40	41	42	43	44	45	45	46	46	47	48	49	-	ю	4	7	8	6
	Top Depth (feet)	140.0	145.0	150.0	151.0	155.0	165.0	165.9	170.0	175.0	180.0	181.2	182.7	183.1	184.5	190.0	195.0	200.0	205.0	205.9	210.0	210.9	215.0	220.0	225.0	8.0	11.5	13.0	20.0	25.0	30.0
	Boring No.	SD-107	SD-107	SD-107	SD-107	SD-107	SD-107	SD-107	SD-107	SD-107	SD-107	SD-107	SD-107	SD-107	SD-107	SD-107	SD-107	SD-107	SD-107	SD-107	SD-107	SD-107	SD-107	SD-107	SD-107	SD-108	SD-108	SD-108	SD-108	SD-108	SD-108

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 15 of 36 (see page 36 for notes)

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

Other Tests Performed ⁶	UOISC	hear yclic trafic	C S D	2 S 																												
	Non-	Consc Test Triax																														
Plasticity ⁵	Liquid Plastic	Limit Limit Plastic				30 27																										
Grain-Size Analyses ⁴		Fines <2µm L																														
Grain-Size		Gravel Sand (%) (%)		<u> </u>																												
·····		Weight (pcf)		╢──																												
		Unit ³ Content (%)		HA 25.7																												
		USCS ²		SP-SM	SP-SM SP-SM	SP-SM ML ML	SP-SM SP-SM ML SP-SM	MS-92 MS-RS MS-RS MS-RS MS-RS	MS-dS MS-dS MS-dS MS-dS MS-dS	MS-92 MS-93 MS MS MS-93 MS MS MS-93 MS MS MS-93 MS MS MS MS MS MS MS MS MS MS MS MS MS	MS-92 MS-73	MS-92 MR-92	MS-R2 MS-R2 MZ MZ-R2 MZ MZ-R2 MZ MZ MZ-R2 MZ MZ MZ MZ	SP-SM SP-SM ML ML SP-SM SP-SM SP-SM SP-SM SM SM SM SM SM SM ML ML CL	SP-SM SP-SM ML SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM CL CL	SP-SM SP-SM SP-SM ML SP-SM SP-SM SP-SM SP-SM SP-SM ML ML ML ML ML ML	SP-SM SP-SM ML ML SP-SM SP-SM SP-SM SP-SM SP-SM ML ML ML ML ML CL CL CL ML ML	SP-SM SP-SM ML SP-SM SP-SM SP-SM SP-SM SP-SM ML ML ML CL CL ML ML ML ML ML SM	SP-SM SP-SM ML SP-SM SP-	SP-SM SP-SM SP-SM ML SP-SM SP-SM SP-SM SP-SM SP-SM ML ML ML ML ML ML ML ML ML ML ML SM SM SM SM SM SM SP-SM	SP-SM SP-SM ML SP-SM SP-SM SP-SM SP-SM SP-SM ML ML ML ML ML ML ML ML ML ML SM SM SM SM SM	SP-SM SP-SM ML SP-SM ML SP-SM SP-SM SP-SM ML ML ML ML ML ML ML ML ML ML ML SM SM SM ML ML ML ML ML ML ML ML ML SP-SM SP-SM SP-SM ML SP-SM SP-SM ML SP-SM SP-SM SP-SM SP-SM ML SP-SM	SP-SM SP-SM ML SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM ML ML ML ML ML ML SM SM SM SM SM SM SM SM SM SM SM SM SM	SP-SM SP-SM ML SP-SM SP-SM SP-SM SP-SM SP-SM ML ML ML ML ML ML ML ML SM SM SM SM SM SM SM SM SM SM SM SM SM	SP-SM SP-SM ML SP-SM SP-SM SP-SM SP-SM SP-SM ML ML ML ML ML ML ML ML ML ML SM SM SM SM SM SM SM SM SM SM SM SM SM	SP-SM SP-SM ML SP-SM SP-SM SP-SM SP-SM SP-SM ML ML ML ML ML ML ML ML ML ML ML ML ML	SP-SM SP-SM SP-SM ML SP-SM SP-SM SP-SM SP-SM SP-SM ML ML ML ML ML ML SM SM SM SM SM SM ML CL CL CL CL CL CL CL CL CL CL CL CL CL	SP-SM SP-SM SP-SM ML SP-SM SP-SM SP-SM SP-SM ML ML ML ML ML ML ML ML ML ML ML ML SM SM SM SM SM SM SM SM ML ML ML ML ML ML ML ML ML ML ML ML ML	SP-SM SP-SM ML SP-SM SP-SM SP-SM SP-SM SP-SM ML ML ML ML ML ML ML ML SM SM SM SM SM SM SM SM ML ML ML ML ML ML ML ML ML ML ML ML ML	SP-SM SP-SM SP-SM ML SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM ML ML ML ML ML ML ML ML ML ML ML ML ML	SP-SM SP-SM ML SP-SM SP-SM SP-SM SP-SM SP-SM SP-SM ML ML ML ML ML ML ML ML ML ML ML ML ML	SP-SM SP-SM ML SP-SM SP-SM SP-SM SP-SM SP-SM ML ML ML ML ML ML ML ML ML ML ML ML ML
· ,	Blow	Count (blows/foot)		28	28 18	28 18 4	28 18 4 18	28 18 4 13 13	28 18 4 13 13 22	28 18 4 18 13 13 22 22	28 18 18 13 22 25 25	28 18 18 13 13 22 25 25 8	28 18 18 13 13 22 25 25 8 8 6	28 18 18 13 13 22 22 25 25 8 8 0	28 18 18 13 13 22 25 25 8 8 8 0	28 18 13 13 13 25 25 25 25 8 8 8 0 0	28 18 13 13 22 25 25 25 8 8 8 8 8 8 8 18	28 18 18 13 13 22 25 25 25 8 8 8 8 8 6 6 6 0 0 0 18 18 32	28 18 13 13 13 25 25 25 25 8 8 8 8 8 18 18 18 18 29 29 29 23 23 23 23 23 23 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25	28 18 18 13 13 22 25 25 25 25 25 26 6 6 6 18 18 18 18 18 18 18 18 18 18 18 18 18	28 18 18 13 13 25 25 25 25 8 8 8 8 8 8 8 8 8 8 8 8 8 8	28 18 18 13 13 22 25 25 25 8 8 8 8 8 8 8 18 18 18 18 25 25 29 0 0 0 18 23 29 23 23 23 23 23 23 23 23 23 25 25 25 25 25 25 25 25 25 26 25 26 26 27 26 27 26 27 26 27 26 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	28 18 18 13 13 25 25 25 25 26 6 6 6 6 7 47 47 47 47 47	28 18 13 13 25 25 25 25 25 26 6 6 6 6 6 7 47 47 47 47 33 33	28 18 18 13 13 22 25 25 25 25 8 8 8 8 8 8 8 8 8 18 18 13 20 0 0 0 0 0 0 18 13 33 33 33 33 33 33 33 33 33	28 18 18 13 13 22 22 25 25 23 23 23 23 23 23 23 23 23 33 33 33 33	28 18 18 13 13 22 25 25 25 29 6 6 6 6 6 7 47 47 29 29 29 23 33 33 33 33 33 33 33 33 33	28 18 18 4 13 13 25 25 25 25 26 6 8 8 8 8 33 22 33 23 33 33 35 35	28 18 18 13 13 28 25 25 25 25 26 6 6 0 18 33 33 33 35 35 35 35 35 35 36			
	. • .	Type ¹		SPT	SPT SPT	SPT SPT SPT	SPT SPT SPT SPT	SPT SPT SPT SPT SPT SPT	TAS TAS TAS TAS TAS TAS	TAS TAS TAS TAS TAS TAS TAS TAS	TAS TAS TAS TAS TAS TAS TAS TAS TAS	Tq2 Tq2 Tq2 Tq2 Tq2 Tq2 Tq2 Tq2 Tq2 Tq2	TAS TAS TAS TAS TAS TAS TAS TAS TAS TAS	TAS TAS TAS TAS TAS TAS TAS TAS TAS TAS	TAS TAS TAS TAS TAS TAS TAS TAS TAS TAS	Tq2 Tq2 Tq2 Tq2 Tq2 Tq2 Tq2 Tq2 Tq2 Tq2	TAS TAS TAS TAS TAS TAS TAS TAS TAS TAS	TAS TAS TAS TAS TAS TAS TAS TAS TAS TAS	TAS TAS TAS TAS TAS TAS TAS TAS TAS TAS	TAS TAS TAS TAS TAS TAS TAS TAS TAS TAS	TAS TAS TAS TAS TAS TAS TAS TAS TAS TAS	TAS TAS TAS TAS TAS TAS TAS TAS TAS TAS	TAS TAS TAS TAS TAS TAS TAS TAS TAS TAS	TAS TAS TAS TAS TAS TAS TAS TAS TAS TAS	TAS TAS TAS TAS TAS TAS TAS TAS TAS TAS	TAS TAS TAS TAS TAS TAS TAS TAS TAS TAS	TAS TAS TAS TAS TAS TAS TAS TAS TAS TAS	TAS TAS TAS TAS TAS TAS TAS TAS TAS TAS	TAR TAR TAR TAR TAR TAR TAR TAR TAR TAR	TAS TAS TAS TAS TAS TAS TAS TAS TAS TAS	TAS TAS TAS TAS TAS TAS TAS TAS TAS TAS	TAS TAS TAS TAS TAS TAS TAS TAS TAS TAS
	op Sample			5.0 10																												
· · · · · · · · · · · · · · · · · · ·	Boring Top	No. Depth (feet)		0-108 35.0																												SD-108 35.0 SD-108 46.0 SD-108 45.0 SD-108 55.0 SD-108 60.0 SD-108 65.0 SD-108 65.0 SD-108 105.0 SD-108 90.0 SD-108 115.0 SD-108 115.0 SD-108 115.0 SD-108 115.0 SD-108 130.0 SD-108 130.0 SD-108 130.0 SD-108 145.0 SD-108 156.0 SD-108 156.0

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 16 of 36 (see page 36 for notes)

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

	-	.sit≥∃T											}		<u> </u>	1		1													<u></u>	
med ⁶		Сотго								-					×																	
erfor		Cyclic Shear						1																	ļ							
Other Tests Performed ⁶										\vdash					-												-	-		-	1	
er Te		oeno) Ioijebi														<u> </u>							<u> </u>	ĺ		Ĺ				<u> </u>	<u> </u>	
Oth	l B	Triaxi Test							1									ļ										!				
	Non-	Plastic								İ	Ì																					
Plasticity ⁵	lastic	cimit		24	20	<u> </u>																	 !	-								
R12	Liquid Plastic	Limit Limit		38	42																											
	1		-						 	-	 	 		 	-				 				 		 							
vses ⁴		s ⊲2µш (%)																														
Analy	·····	Fines (%)																			20.2					8.6		4.9				
Grain-Size Analyses ⁴	···· · · · · · · · · · · · · · · · · ·	Sand (%)							1																	89.5	:					
		Fravel (%)																								1.9						
	Wet Unit	t Weight ((pcf)		i																												
	Water	Content (%)	46.1	30.1	29.9	25.5	22.7	25.8	27.6	21.8	29.6	21.8	17.8	32.1		33.7	36.4	30.6	40.3	29.0	30.2	30.9	26.8	25.2	27.0	25.0	26.5	33.2	46.6	33.3	41.7	29.6
	Geologic	Unit ³	HE	QPGL	QVGL	QVGL	QPGM	QPGM	QPGM	QPGM	QPGM	QPGM	QPGM	QPGM	HF	Ĥ	HF	HF	ΗF	Ĥ	HF	HF	HA	HA	HA	HA	HA	HA	HΑ	HA	HE	HE
		USCS ²	ML	CL	С	CL	CH	CH	CH	CH	CH		CH	CH	SM	SM	SM	SM	SM	SM	SM	SM	SP-SM	SP-SM	SP-SM	SP-SM	SP-SM	SP-SM	SP-SM	SM	SM	SM
	•	Count (blows/foot)	0	64	50/5"	60	50/6"	81	50/5"	69	54	73	76	41	r	Э	3	я	œ	80	13	4	12	14	20	21	24	80	6	18	0	•
	Sample		SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	GRAB	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	OSTER
	Sample		43	44	45	46	47	48	49	50	51	52	53	54		1	Ś	3	4	4	5	9	7	8	6	10	11	12	13	14	15	16
	Top	<u> </u>	190.0	195.0	200.0	205.0	210.0	215.0	220.0	225.0	230.0	235.0	240.0	245.0	5.3	7.5	12.5	13.0	15.0	16.0	17.5	20.0	22.5	27.5	32.5	37.5	42.5	47.5	52.5	57.5	62.5	64.0
	Boring	No.	SD-108	SD-108	SD-108	SD-108	SD-108	SD-108	SD-108	SD-108	SD-108	SD-108	SD-108	SD-108	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 17 of 36 (see page 36 for notes)

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

		estes T	Ì																													
Other Tests Performed ⁶	noise	Corro Shear													-																	
sts Per	ŭ	oitsbi oilsy3										-			-														-			
ber Te	-IC	Test Consc	 										1													_		 	ļ		.	
ō	lsi	xsirT																														
.	Non-																															
Plasticity ⁵	Plastic	Limit																				30										
T erre terre Liquid	Limit																				40											
es ⁴		∠2µm (%)																					14.5									
Grain-Size Analyses ⁴		Fines (%)				4.3								59.9									99.2									
in-Size		Sand (%)																														
	0.n.n.T	Gravel (%)																														
	Wet Unit	t Weight ((pcf)															!															
	Water	Content (%)		28.7	34.2	30.5	37.1	33.7	32.2	32.8	30.7	28.2	36.0	38.8	52.4	36.4	31.9	27.8	35.5	33.9	31.3	40.9	39.8	43.8	34.4	34.4	31.6	37.0	32.4	27.7	24.4	39.1
	: • 0	Unit ³	HE	HA	HE	HE	HE	HE	HE	HA	HA	HE	HE	HA	HA	HE																
		USCS ²	SM	SP	SP	SP	SM	SM	SM	SM	SM	SP-SM	SM	SM	SM	SM	SM	WS	SM	SM	ML	CL	CL	CL	cL	SM	SM	ML	ML	SP-SM	SP-SM	C
	Blow	Count (blows/foot)		23	20	20	я		1	13	18	22	4	6	12	12	23	23	19	14	3	4	6		3	25	24	2	13	22	26	12
	Sample	Type ¹	OSTER	SPT	SPT	SPT	SPT	OSTER	OSTER	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	OSTER	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT
	Sample	No.	16	17	18	19	20	21	21	22	23	24	25	26	27	27	28	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42
			64.3	67.5	72.5	77.5	82.5	85.6	86.6	87.0	92.5	97.5	102.5	107.5	112.5	113.6	117.5	118.3	122.5	127.5	132.5	137.5	142.5	145.5	147.5	152.5	157.5	162.5	167.5	172.5	177.5	182.5
1	Boring		SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 18 of 36 (see page 36 for notes)

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

9	e sts									Ī									<u> </u>	<u> </u>					<u> </u>	<u> </u>					
Other Tests Performed ⁶	Shear Corrosion									-				.		-														 	
s Perf	Cyclic																-	-													
r Test	Consol- idation																														
Othe	Triaxial Jest							••- ••													i										
	Non- Plastic																														
Plasticity ⁵	Plastic Limit					27									25						 										
	Liquid					50									58											 					
S.4	ш.(%		<u>,</u>	23.0															1	<u>,</u>			1						1		
Grain-Size Analyses ⁴	Fines (%)			88.1															5.7							9.7					44.5
ain-Size	Sand (%)			11.9															94.3												
₽Ĵ.	ુ હુ છે.			0.0															0.0												
	Wet Unit (pcf)																														
	Water Content (%)		47.9	44.1	22.3	34.6	21.9	20.5	9.0	34.6	10.4	37.9	40.7	23.2	60.4	59.1	37.6	28.4	28.1	29.2	28.8	23.7	42.4	42.5	35.3	33.5	26.7	33.8	30.0	38.3	35.7
	Geologic Unit	HE	HE	HE	HRW	QVRL	QPGO	QPGO	QPGO	QPGL	HF	HF	HF	HF	HE	HE	HE	HA	HA	HA	HA	HA	НА	HA	HA	HA	HA	HA	HA	HA	HA
:	USCS ²	С	CL	CL	SM	CH	SM	SP-SM	SP-SM	CH	GM	ML	SM	SM	CH	CH	ML	SP-SM	SP-SM	SP-SM	SP-SM	SP-SM	SM	SM	SP-SM	SP-SM	SP-SM	SM	SM	SM	SM
·	Blow Count (blows/foot)	13	4	2	10	4	50/6"	50/5"	50/6"	35	2	4	7	6	0	2	2	10	11	8	17	24	6	З	15	15	15	3	6	15	6
	Sample Type ¹	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT
	Sample No.	43	44	45	46	47	48	49	51	52	1	2	3	4	5	6	6	7	8	6	10	11	12	13	14	15	16	17	18	19	20
	Top Depth (feet)	187.5	192.5	197.5	202.5	207.5	212.5	217.5	227.5	232.5	5.0	7.5	10.0	12.5	15.0	17.5	18.4	20.0	22.5	27.5	32.5	37.5	42.5	47.5	52.5	57.5	62.5	67.5	72.5	77.5	82.5
	Boring No.	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-109	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 19 of 36 (see page 36 for notes)

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

:	2129T		1					1											Ī	-					ŀ			1	Ī	;	
med ⁶	Corrosion Tests															 		 !		 				 				 	 		
Other Tests Performed ⁶	Shear Syciic																														
r Tests	Consol- Idation		-																												
Othe	Triaxial Test																														
	Non- Plastic																														
Plasticity ⁵	Plastic Limit												30																		
P	Liguid		'										41																		
52 ⁴	нт (%)		1													•					11.6										
Grain-Size Analyses ⁴	Fines (%)							•													41.1										
in-Size	Sand (%)																				56.8										
Gra	Gravel (%)																				2.1										
	Wet Unit Weight (pcf)																														
	Water Content (%)	30.7	34.1	34.1	29.5	37.7	32.5	36.7	26.8	32.3	34.3	37.6	36.6	22.8	42.8	45.6	42.9	39.8	38.9	29.7	24.7	21.9	21.6	17.8	22.9	24.1	22.2	28.3	24.7	4.0	39.0
	Geologic Unit ³	HA	HA	HA	HA	HA	HE	HA	HA	HA	HA	HE	HE	HE	HE	HE	HA	HE	HE	HE	Ë	HRW	QPGO	QPGO	QPGO	QPGM	QPGM	QPGM	QPGM	HF	HF
<u></u>	uscs ²	SM	SM	SM	SM	SM	ML	SP-SM	SP-SM	SP-SM	SM	ML	ML	ML	ML	ML	SM	ML	ML	ML	ML	sc	SM	SM		CL		С	CL	SP-SM	SP-SM
	Blow Count (blows/foot)	12	10	16	12	11	2	14	21	14	4	2	1	0	0	0	27	0	0	0	0	22	60	91	46	24	28	34	94		ε
· .	Sample Type ¹	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT
	Sample No.	21	22	23	24	25	26	27	28	29	30	31	32	33	35	37	38	39	40	41	43	44	45	46	47	48	49	50	51		2
	Top Depth (feet)	87.5	92.5	97.5	102.5	107.5	112.5	117.5	122.5	127.5	132.5	137.5	142.5	147.5	152.5	162.5	167.5	172.5	177.5	182.5	187.5	192.5	197.5	202.5	207.5	212.5	217.5	227.5	247.5	7.0	12.5
	Boring No.	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-110	SD-111	SD-111

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 20 of 36 (see page 36 for notes)

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

° ^b	Corrosion									×													-								
Other Tests Performed ⁶	Cyclic Shear																														
Tests P	Consol- idation																														
Other	Triaxial JesT		,																												
	Non- Plastic																										<u> </u>		-		
Plasticity ⁵	Plastic Limit		25																												
P	Liquid		53															1													
es ⁴	Аµт (%)																														
Grain-Size Analyses ⁴	Fines (%)						7.1							9.2								52.7									
ain-Size	Sand (%)													90.8																	
	Gravel (%)													0.0																	
	Wet Unit Weight (pcf)																														
	Water Content (%)	63.0	53.3	31.5	26.7	27.3	27.4	74.2	32.2	36.8	35.5	38.2	29.1	34.2	39.9	32.0	33.1	33.1	34.7	29.3	31.1	32.9	36.5	28.3	29.4	40.5	29.3	37.9	29.2	32.4	32.0
	Geologic Unit ³	HF	ΗF	HA	HE	HA	HE	HE	HA	HA	HA	HA	HA	HA	HA	HA															
	USCS ²	CH	CH	SM	SP-SM	SP-SM	SP-SM	SP-SM	SP-SM	SP-SM	ML	SP-SM	SP-SM	SP-SM	SM	SM	SM	SM	SM	SM	SM	ML	ML	SM	SM	SM	SM	SM	SM	SM	SM
	Blow Count (blows/foot)	0	0	17	15	29	35	35	24	12	5	18	27	28	21	10	16	23	6	31	23	21	11	15	34	22	27	28	10	34	27
	Sample Type ¹	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT
	Sample No.	9	4	5	6	7	8	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	1	2
	Top Depth (feet)	15.0	17.5	20.0	25.0	30.0	35.0	35.2	40.0	45.0	50.0	55.0	60.0	65.0	70.0	75.0	80.0	85.0	90.0	95.0	100.0	105.0	110.0	115.0	120.0	125.0	130.0	135.0	140.0	130.0	135.0
-	Boring No.	SD-111	SD-111	SD-111	SD-111	SD-111	SD-111	SD-111	SD-111	SD-111	SD-111	SD-111	SD-111	SD-111	SD-111	SD-111	SD-111	SD-111	SD-111	SD-111	SD-111	SD-111	SD-111	SD-111	SD-111	SD-111	SD-111	SD-111	SD-111	SD-111A	SD-111A

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 21 of 36 (see page 36 for notes)

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

·	Tests	Ī		ĺ											<u> </u>				<u> </u>								Ī			<u> </u>	
Other Tests Performed ⁶	Corrosion								 							-														_	
erfor	Shear Cyclic																					i									
ests P	-loznoD- idation	╞								-																		1			
her T	Consol-																											-			
ŏ	Triaxial Test																														
	Non- Plastic																														
Plasticity ⁵	Plastic Limit			27			30					19											25		1						
đ	Liquid			34			48					41											65			•	· }				
	۳ ()						, , ,	1		r																	<u> </u>				
Grain-Size Analyses ⁴	Fines (%)																					6.2					15.9			26.7	
n-Size	Sand (%)	- 																				93.8									
	્રાય																					0.0		 							,
	Wet Unit Weight ((pcf)		<u> </u>					115	121						<u> </u>									106							
	Vater onteni (%)	H	26.1	35.8	35.4	38.1	45.0	33.0	23.5	19.3	22.0	31.9	21.7	21.8	17.5	14.7	12.4	10.9	26.0	34.7	14.4	32.2	69.0	50.9	55.7	29.0	31.5	28.0	28.7	39.0	34.7
	Geologic V Unit ³ C	HA	HA	HE	HE	HE	HE	HE	HB	HB	HB	QVRL	QPGO	QPGO	QPGO	QPGO	QPGM	QPGM	QPGL	HF	HF	HA	HL	HL	HL	HA	HA	HA	HA	HE	HE
		۲ ۲	SM		L L	J	L L		V	V	ч						•			V	V	SM	H	н	н	SM	SM	SM	SM	7	A
	USCS ²	SM	SP-SM	ML	ML	ML	ML	ML	SM	SM	SM	ਹੋ 	SP-SM	SP-SM	SP-SM	SP-SM	SC	SC	CH	MS	SM	SP-SM	CH	CH	CH	SP-SM	SP-SM	SP-SM	SP-SM	SM	SM
	Blow Count (blows/foot)	m	49	0	0	0	0		ı	3	25	14	50/5"	50/4"	50/5"	50/4"	90/11"	50/4"	53	7	11	4	0		0	12	13	37	33	ю	5
	Sample Type ¹	SPT	SPT	SPT	SPT	SPT	SPT	OSTER	OSTER	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	OSTER	SPT	SPT	SPT	SPT	SPT	SPT	SPT
	Sample No.	m	4	5	6	7	8	6	6	10	11	12	13	14	15	16	17	18	19	1	2	3	4	5	6	7	8	6	10	11	12
	Top Depth (feet)	140.0	145.0	150.0	155.0	160.0	165.0	170.2	171.4	172.5	175.0	180.0	185.0	190.0	195.0	200.0	205.0	210.0	215.0	7.5	10.0	12.5	15.0	18.3	19.5	25.0	30.0	35.0	40.0	45.0	50.0
	Boring No.	SD-111A	SD-111A	SD-111A	SD-111A	SD-111A	SD-111A	SD-111A	SD-111A	SD-111A	SD-111A	SD-111A	SD-111A	SD-111A	SD-111A	SD-111A	SD-111A	SD-111A	SD-111A	SD-112	SD-112	SD-112	SD-112	SD-112	SD-112	SD-112	SD-112	SD-112	SD-112	SD-112	SD-112

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 22 of 36 (see page 36 for notes)

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

d°	orrosion. Corrosion									j 				:																	
Other Tests Performed ⁶	Lissand Lissand	5																					 					<u> </u>		 	
ests Pe	dation yelie	i –														!															
)ther T	-losno test	-1																								-			 		
0	leixeit			 							 					 				×		×	 	 		 					
2 2	Non- Plastic																											ļ			
Plasticity ⁵	Plastic Non- Limit Plastic	:							1					ſ					29	30		29	 	 	 	 	 	; 			
	Liquid Limit																		48	45		44									
es ⁴	≪2µm (%)																														
Grain-Size Analyses ⁴	Fines					24.3							45.5												17.1						
in-Size	Sand		İ			,																			70.9						
Gra	Gravel	1																		ļ					12.1						
	Wet Unit Weight (ncf)	7																		109	108										
	Water Content	29.5	31.9	35.4	44.6	30.9	31.4	30.0	32.8	29.3	32.6	34.6	28.7	27.4	26.8	27.0	32.0	33.3	41.4	41.4	41.9	42.3	40.5	36.9	19.9	19.2	14.8	17.7	11.4	7.4	24.5
	Geologic Unit ³	HA	HA	HE	HE	HE	HE	HE	HE	HE	HE	HE	HE	HA	HA	HA	HE	HE	HE	HE	HE	HE	HE	HE	HB	HB	QPGO	QPGO	QPGO	QPGM	QPGM
	USCS ²	SP-SM	SP-SM	ML	ML	SM	SM	SM	ML	SM	SM	SM	SM	SP-SM	SP-SM	SP-SM	ML	ML	ML	ML	ML	ML	ML	ML	SM	SM	SP-SM	SP-SM	SP-SM	GM	GM
· ····································	Blow Count (hlows/foot)	27	22	11	5	22	18	14	4	23	21	10	23	31	34	27	17	11	5	•	I	r	14	0	26	24	50/6"	50/5"	50/5"	48	17
	Sample Type ¹	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	OSTER	OSTER	OSTER	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT
	Sample No.	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	31	31	32	33	34	35	36	37	38	39	40
	Top Depth (feet)	55.0	60.0	65.0	70.0	75.0	80.0	85.0	90.0	95.0	100.0	105.0	110.0	115.0	120.0	125.0	130.0	135.0	140.0	142.1	142.8	142.9	144.0	150.0	155.0	160.0	165.0	170.0	175.0	180.0	185.0
	Boring No.	SD-112	SD-112	SD-112	SD-112	SD-112	SD-112	SD-112	SD-112	SD-112	SD-112	SD-112	SD-112	SD-112	SD-112	SD-112	SD-112	SD-112	SD-112	SD-112	SD-112	SD-112	SD-112	SD-112	SD-112	SD-112	SD-112	SD-112	SD-112	SD-112	SD-112

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 23 of 36 (see page 36 for notes)

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

ed	sts Trosion	_										×																		<u> </u>		
Other Tests Performed ⁶	ear ear	·													+		+			-										+		-
Tests P	-losn noiti	:pi								-						-																
Other	lsixsi tz																											l				
		<u>.</u>		 		 		 										 					-									
ity ⁵	ic Non- it Plastic																			<u> </u>												
Plasticity ⁵	Plastic Limit			23							24																			32		
	Liquid Limit			48							50													•						37		
ss.	₿ L	(%)																														
Grain-Size Analyses ⁴	Fines	· (%)						31.3						7.1				6.6			·				18.8			48.1			Ĭ	
n-Size	Sand	(%)												92.9				93.3														
Grai	Gravel	(%)												0.0				0.1														
	Wet Unit Weight C	5.57												<u> </u> 												 			-			
										_					 																_	
		(%)	32.2	29.4	30.3	30.8	15.8	10.5	24.4	60.7	52.4	41.2	28.8	32.3	27.8	31.4	37.9	30.3	31.5	28.0	35.2	34.9	33.2	34.0	29.0	26.8	29.9	33.1	33.1	39.8	26.9	34.3
	Geologic Unit ³		QPGL	QPGL	QPGL	QPGL	HF	HF	HA	HF	HF	HF	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HA	HE	HA	HE
· · · · · ·	uscs ²	· · · · · · · · · · · · · · · · · · ·	CL	сГ	CL	CL	SM	SM	SP-SM	c	CL	С	SP-SM	SP-SM	SP-SM	SP-SM	SP-SM	SP-SM	SP-SM	SP-SM	SP-SM	SP-SM	SM	SM	SM	SP-SM	ML	ML	ML	ML	SP-SM	ML
	Blow Count	(blows/foot)	41	53	83	50/5"	2	5	11	0	0	0	10	13	24	11	17	22	27	26	23	22	19	13	21	28	14	12	80	0	30	1
	Sample Type ¹		SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT
	Sample No.		41	42	43	44	1	2	3	4	5	6	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
		(feet)	190.0	195.0	200.0	205.0	7.5	10.0	12.5	15.0	17.5	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	60.0	65.0	70.0	75.0	80.0	85.0	90.0	95.0	100.0	105.0	110.0	115.0	120.0
	Boring No.		SD-112	SD-112	SD-112	SD-112	SD-113	SD-113	SD-113	SD-113	SD-113	SD-113	SD-113	SD-113	SD-113	SD-113	SD-113	SD-113	SD-113	SD-113	SD-113	SD-113	SD-113	SD-113	SD-113	SD-113	SD-113	SD-113	SD-113	SD-113	SD-113	SD-113

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 24 of 36 (see page 36 for notes)

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

··.
(blows/foot) USCS ⁴ Unit ⁴
7 ML HE
6 ML HE
0 ML HE
33 ML HRW
37 ML HRW
54 ML QPGL
49 ML QPGL
72 CL QPGL
50 CL QPGL
54 CL QPGL
4 CH HF
15 CH HF
1 CH HF
1 CH HF
12 SP HA
15 SP HA
17 SP-SM HA
10 SP-SM HA
SP-SM
16 SP-SM HA
2 SM HE
2 SM HE
- SM HE
- SM HE
SM
SM
3 ML HE

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 25 of 36 (see page 36 for notes)

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

Other Tests Performed ⁶	Cyclic Shear Corrosion Tests																						×								
er Tests Po	Consol- idation									×																					
Othe	[bixei1]																														
s	Non- Plastic																										1				
Plasticity ⁵	Plastic Limit						27			27												24									
	Liguid				_		30	-		34												59									
yses ⁴	s ≪2μm																														
ze Analy	d Fines (%)		7 16.3																						50.8	6 6.4			4.1		
Grain-Size Analyses ⁴	vel Sand (%)		0 83.7																							0 93.6					
	Gra		0.0																							0.0					Ī
	Wet Unit t Weight (pcf)							120	113																			_			
	Water Content (%)	31.4	29.4	38.5	35.2	39.0	36.6	33.9	33.7	34.5	35.5	15.4	16.6	7.9	33.5	31.9	33.0	34.1	31.0	29.5	67.4	62.3	61.1	63.8	27.9	28.5	30.6	66.1	27.1	27.5	
	Geologic Unit ³	HA	HA	HA	HA	HE	HE	HE	HE	HE	HE	QPGM	QPGM	QPGM	QPGL	QPGL	QPGL	QPGL	QPGL	QPGM	HF	HF	HF	HF	HE	HE	HE	HA	HA	HA	
•	uscs ²	SM	SM	SM	SM	ML	ML	ML	ML	ML	ML	SC	SC	SC	CL	CL	CL	CL	CL	CH	CH	CH	СН	CH	SM	SM	SM	SP	SP	SP	
	Blow Count (blows/foot)	21	31	21	14	3	5		ı	1	ŝ	50/4"	100/10"	92	50/5"	83/11"	71	76	42	43	1	0	0	0	2	18	25	24	24	30	
	Sample Type ¹	SPT	SPT	SPT	SPT	SPT	SPT	OSTER	OSTER	OSTER	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	TqS	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	
	Sample No.	19	20	21	22	23	24	25	25	25	26	28	29	30	31	32	33	34	35	36	3	4	5	6	7	8	6	10	10	11	
	Top Depth (feet)	80.0	85.0	90.0	95.0	100.0	105.0	107.8	108.6	108.8	110.0	120.0	125.0	130.0	135.0	140.0	145.0	150.0	155.0	160.0	12.5	15.0	17.5	20.0	25.0	30.0	35.0	40.0	40.3	45.0	
	Boring No.	SD-114	SD-114	SD-114	SD-114	SD-114	SD-114	SD-114	SD-114	SD-114	SD-114	SD-114	SD-114	SD-114	SD-114	SD-114	SD-114	SD-114	SD-114	SD-114	SD-115	SD-115	SD-115	SD-115	SD-115	SD-115	SD-115	SD-115	SD-115	SD-115	

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 26 of 36 (see page 36 for notes)

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

formed ⁶	Shear Corrosion Tests																				×										
Other Tests Performed ⁶	Consol- idation Cyclic	 							_ _ .																				 		
Other	leixsirT		•																					 							
y ⁵	Non- Plastic																														
Plasticity ⁵	l Plastic Limit						29							20									 	25							
	Liquid Limit						32							57		1								52		:	 				
yses ⁴	ss Зµт (%)																	,						, 				 	5		
Grain-Size Analyses ⁴	d Fines) (%)	1 6.9				63.1						 						0 26.4									7.5		44.5		
Grain-Si	(el Sand (%)	93.1												 				6 53.0											·		
	Gra Gra	0.0																20.6							 						
	Wet Unit Weight (pcf)																														
	Water Content (%)	25.9	33.8	37.6	30.4	34.4	37.9	28.8	34.7	35.4	8.0	12.6	28.8	33.8	22.4	27.7	26.1	11.0	24.2	35.2		48.1	67.8	55.8	60.8	40.7	31.7	30.0	30.3	36.5	33.6
	Geologic Unit ³	HA	HA	HE	HE	HE	HE	HA	HE	HE	HRW	HRW	QPGL	QPGL	QPGM	QPGM	QPGM	QPGM	QPGM	QPGL	HF	HF	HF	HF	HF	ΗA	HA	HA	HA	HA	HA
	USCS ²	SP-SM	SP-SM	ML	ML	ML	ML	SP-SM	ML	ML	GM	GM	CL	cr	ML	ML	ML	SM	ML	ML	SM	SM	CH	CH	CH	SP-SM	SP-SM	SP-SM	SM	SM	SM
	Blow Count (blows/foot)	22	5	5	4	4	2	18	5	2	27	54	54	46	50/4"	54	50/5"	50/6"	50/3"	56		2	2	0	0	0	11	10	25	25	18
	Sample Type ¹	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	GRAB	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT
-	Sample No.	12	13	13	14	15	16	17	18	19	20	21	21	22	23	24	26	27	28	29	ı	2	e	4	5	5	6	7	8	6	10
· · · · ·	Top Depth (feet)	50.3	55.0	55.8	60.0	65.0	70.0	75.0	80.0	85.0	90.0	95.0	95.5	100.0	105.0	110.0	120.0	125.0	130.0	135.0	3.0	12.5	15.0	17.5	20.0	21.0	25.0	30.0	35.0	40.0	45.0
	Boring No.	SD-115	SD-115	SD-115	SD-115	SD-115	SD-115	SD-115	SD-115	SD-115	SD-115	SD-115	SD-115	SD-115	SD-115	SD-115	SD-115	SD-115	SD-115	SD-115	SD-116	SD-116	SD-116	SD-116	SD-116	SD-116	SD-116	SD-116	SD-116	SD-116	SD-116

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 27 of 36 (see page 36 for notes)

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

eď	Corrosion Tests			×		×											×										•	×			
Other Tests Performed ⁶	Cyclic Shear							-																							
r Tests	Consol- idation																														
Othe	Triaxial Test																								-						
	Non- Plastic																														
Plasticity⁵	Plastic Limit		28																35		30				27			22			
	Liquid		36															<u> </u>	55		44				43			49			
5.4	⊲2μm (%)			•																		19.7									
Analyse	Fines (%)																					99.2									
Grain-Size Analyses ⁴	Sand (%)																														
Gra	Gravel (%)																														
	Wet Unit Weight (pcf)																														
	Water Content (%)	35.3	40.0	44.0	10.0	21.1	27.9	28.3	21.1	19.5	25.4	17.1	12.0	14.0	34.6		9.2	18.4	49.9	39.9	47.6	41.8	44.2	46.5	41.4	52.5	45.3	39.2	35.3	9.7	12.7
	Geologic Unit ³	HE	HE	HE	HRW	QPGM	QPGM	QPGM	QPGM	QPGM	QPGM	QPGM	QPGM	QPGM	QPGL	HF	HF	HF	HE	HE	HE	HE	HE	HE	HE	HE	HE	QVRL	QVRL	QPGM	QPGM
	USCS ²	ML	ML	ML	GW-GM	ъ	CL	CL	SC	sc	sc	SC	SC	SC	ML	SP-SM	GP	GP	ML	ML	CL	CL	CL	CL	CL	СĽ	CL	CH	CH	SC	sc
	Blow Count (blows/foot)	0	0	0	44	85	50/6"	50/5"	50/3"	50/4"	57	50/4"	50/3"	50/3"	86	,	27	7	2	0	0	3	1	L	1	0	0	14	6	50/5"	50/5"
	Sample Type ¹	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	GRAB	SPT	SPT	SPT	SPT	SPT	SPT	OSTER	OSTER	SPT	SPT	SPT	SPT	SPT	SPT	SPT
	Sample No.	11	13	14	15	16	17	18	19	20	21	22	23	24	25	•	3	4	6	7	8	10	11	11	12	13	14	15	16	17	18
	Top Depth (feet)	50.0	60.0	65.0	70.0	75.0	80.0	85.0	90.0	95.0	100.0	105.0	110.0	115.0	120.0	4.5	15.0	17.5	25.0	30.0	35.0	42.0	45.1	46.1	47.0	50.0	55.0	60.0	65.0	70.0	75.0
· ·	Boring No.	SD-116	SD-116	SD-116	SD-116	SD-116	SD-116	SD-116	SD-116	SD-116	SD-116	SD-116	SD-116	SD-116	SD-116	SD-117	SD-117	SD-117	SD-117	SD-117	SD-117	SD-117	SD-117	SD-117	SD-117	SD-117	SD-117	SD-117	SD-117	SD-117	SD-117

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 28 of 36 (see page 36 for notes)

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

qe	Corrosion Tests								-									×		-											
Other Tests Performed ⁶	TReat		. 						-											_	-				-						
ests Pe	dation Cyclic				<u> </u>	-								-							-						<u> </u>				$\left \right $
ther T	Jest LosnoJ								<u> </u>							-		-		-										-	
	<u></u>			<u> </u>													 													<u> </u>	
2	Non- Plasti																						į								
Plasticity⁵	Plastic Non- Limit Plastic] 						30						21				 		ļ 	! [
1	Liguid Limit																	48						36							
S.	Zµm (%)									Ī		-						22 0									f				
Analyse	Fines (%)								25.6	 								99.2											21.8		
Grain-Size Analyses ⁴	Sand (%)								71.9															<u> </u>					50.0		
	G B						•	 	2.5																	1		.	28.2		
	Wet Unit Weight (pcf)									•																					
	Water Content (%)	16.9	17.3	8.1	17.5	13.2	18.5	24.9	27.4	26.2	26.6	26.6	40.3	46.5	47.2	54.3	45.2	47.9	43.3	30.9	65.4	32.9	16.7	34.3	13.6	9.1	6.3	68.3	12.4	23.4	11.0
	Geologic Unit ³	QPGM	QPGM	QPNF	QPNF	QPNF	QPNF	QPNF	HF	HF	HF	HF	HE	HE	HE	HE	HE	HE	HE	HE	ĤE	QVRL	QPNF	QPNF	QPNF	QPNF	QPNF	QPNF	QPNF	QPNF	QPNF
	USCS ²	sc	sc	SM	SM	SM	SM	SM	SM	SM	SM	SM	С	CL	CL	CL	CL	CL	С	СГ	SM	CH	g	S	GC	GC	GC	SM	SM	SM	SM
	Blow Count (blows/foot)	50/5"	70	50/5"	50/5"	90/10"	50/6"	50/4"	4	13	14	ę	1	0	I	1	1	0	0		14	14	29	1	,	84	65	65	73	73	85/11"
	Sample Type ¹	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	OSTER	OSTER	SPT	SPT	SPT	SPT	SPT	SPT	SPT	OSTER	OSTER	SPT	SPT	SPT	SPT	SPT	SPT
	Sample No.	19	20	21	22	23	24	25	1	2	3	4	5	6	7	7	8	6	10	12	13	13	14	15	15	16	17	17	18	18	19
	Top Depth (feet)	80.0	85.0	90.0	95.0	100.0	105.0	110.0	10.0	12.5	15.0	17.5	20.0	25.0	27.0	27.5	30.0	35.0	40.0	50.0	55.0	55.3	60.0	61.5	61.8	65.0	70.0	70.8	80.0	80.8	85.0
	Boring No.	SD-117	SD-117	SD-117	SD-117	SD-117	SD-117	SD-117	SD-118	SD-118	SD-118	SD-118	SD-118	SD-118	SD-118	SD-118	SD-118	SD-118	SD-118	SD-118	SD-118	SD-118	SD-118	SD-118	SD-118	SD-118	SD-118	SD-118	SD-118	SD-118	SD-118

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 29 of 36 (see page 36 for notes)

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

 ٦و	Corrosion Tests					×													×					!		-	-				
Other Tests Performed ⁶	Shear																				 										$\left - \right $
sts Per	idation Cyclic																							-							$\left \right $
ther Te	Test Consol-																				-				_						
Õ	lsixsirT							1						 			 														
,5 	Non- Plastic																														
Plasticity⁵	Plastic Limit										39			29																	
	Liquid Limit										09			51																	
2S ⁴	<2μm (%)																														
Grain-Size Analyses ⁴	Fines (%)		3.3				34.9												7.3										20.7		
n-Size	Sand (%)	-	43.1				60.6												92.7												
Grai	Gravel (%)		53.6		<u> </u>		4.4												0.0												
	Wet Unit Weight (pcf)																														
	Water Content (%)	12.9	10.6	10.8	5.7		28.7	94.4	164.5	11.2	57.8	57.1	43.9	44.6	49.0	210.1	28.3	83.3	19.8	10.1	12.0	13.0	11.3	9.6	13.0	11.2	11.3	10.9	21.0	21.1	15.1
	Geologic Unit ³	QPNF	QPNF	QPNF	QPNF	HF	HF	HF	HF	HF	HF	HE	HE	HE	HE	HP	QVRL	QVRL	QPNF	QPNF	QPNF	QPNF	QPNF	QPNF	QPNF	QPNF	QPNF	QPNF	HF	HF	HF
	USCS ²	GP	GP	GP	GP	SM	SM	ΡТ	ΡT	GP-GM	GP-GM	CL	С	CL	ರ	TO	CH	CH	GW-GM	GW-GM	GW-GM	GW-GM	GW-GM	SM	SM	SM	SM	SM	SM	SM	GP
	Blow Count (blows/foot)	50/6"	78	38	31	1	1	7	50/5"	3	ę	r	1	1	4	8	8	12		47	50/3"		50/6"	101/7"	100/6"	150/7"	108/7"	100/6"	2	З	34
	Sample Type ¹	SPT	SPT	SPT	SPT	GRAB	SPT	SPT	SPT	SPT	SPT	3SS	3SS	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT
-	Sample No.	20	21	22	23	1	1	4	5	6	6	11	13	14	15	16	16	17	18	19	21	22	23	28	29	30	31	32	1	2	ю
	Top Depth (feet)	90.0	95.0	100.0	105.0	3.5	8.0	15.0	17.5	20.0	20.5	34.0	39.0	42.5	47.5	52.5	53.5	57.5	62.5	67.5	77.5	82.5	87.5	99.3	102.5	107.5	112.5	117.5	10.0	12.5	15.0
	Boring No.	SD-118	SD-118	SD-118	SD-118	SD-119	SD-119	SD-119	SD-119	SD-119	SD-119	SD-119	SD-119	SD-119	SD-119	SD-119	SD-119	SD-119	SD-119	SD-119	SD-119	SD-119	SD-119	SD-119	SD-119	SD-119	SD-119	SD-119	SD-120	SD-120	SD-120

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 30 of 36 (see page 36 for notes)

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

ed ⁶	Corrosion Tests													1								1									
Other Tests Performed ⁶	Shear Syclic																			•					 			<u> </u>			
Tests F	-lozno) idation																			[
Other	Triaxial Jest																														
2	Non- Plastic																														
Plasticity ⁵	Plastic Limit																														
	Limit																														
es ⁴	⊲2µm (%)																														
Grain-Size Analyses ⁴	Fines (%)		20.0		8.9						7.2															23.5					
ain-Size	Sand (%)				55.9						92.8																				
3	Gravel (%)				35.2						0.0																				
	Wet Unit Weight (pcf)																														
	Water Content (%)	16.7	19.5	14.0	11.5	9.8	21.6	12.9	34.1	20.6	19.1	52.1	25.7	24.8	26.7	23.8	17.6	19.4	16.4	14.4	29.6	35.9	29.2	5.5	8.4	30.9	66.6	73.6	51.8	48.8	11.9
	Geologic Unit ³	HF	HB	HB	HB	HB	HB	HLS	HLS	HLS	QPNF	QPNL	QPNL	QPNL	QPNL	QPNL	QPNF	QPNF	QPNF	QPNF	QPNL	QPNL	QPNL	HF	HF	HF	HF	HF	HE	HE	HB
· · · · ·	USCS ²	GP	SP-SM	SP-SM	SP-SM	SP-SM	SM	GM	ML	ML	SP-SM	ML	ML	ML	ML	ML	SP-SM	SP-SM	SP-SM	SP-SM	CH	CH	CH	GP-GM	GP-GM	GP-GM	SM	SM	ML	ML	SC
	Blow Count (blows/foot)	30	6	16	36		23	50/5"	91/10"	91/10"	50/4"		50/5.5"	50/5.5"	"01/66	100/10"	50/4"	50/5"	50/5"	50/5"	50/5.5"	.01/66	85/10"	28	4	1	4	2	2	5	23
	Sample Type ¹	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT
. :	Sample No.	4	9	7	~	6	10	11	12	12	13	14	15	16	17	18	19	20	21	22	23	24	25	1	С	5	6	7	7	8	6
	Top Depth (feet)	17.5	25.0	30.0	35.0	40.0	45.0	50.0	55.0	55.4	60.0	65.0	70.0	75.0	80.0	85.0	90.0	95.0	100.0	105.0	110.0	115.0	120.0	7.0	10.5	15.0	17.5	20.0	21.0	23.5	27.5
	Boring No.	SD-120	SD-120	SD-120	SD-120	SD-120	SD-120	SD-120	SD-120	SD-120	SD-120	SD-120	SD-120	SD-120	SD-120	SD-120	SD-120	SD-120	SD-120	SD-120	SD-120	SD-120	SD-120	SD-121	SD-121	SD-121	SD-121	SD-121	SD-121	SD-121	SD-121

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 31 of 36 (see page 36 for notes)

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

]e	sise									<u> </u>			-					×								-						
Other Tests Performed ⁶	orrosion D	s					-								-														<u> </u>			
sts Per	yclic yclic	· · ·																	_													
ner Te	-lozno	ົ																									-					
Ōtl	leixeir Jze																															
5	Non- Plastic											-																				
Plasticity ⁵	Plastic Limit				23																25											
	Liquid				55																51											
S. ⁴	2 III	(%)								-																						
Grain-Size Analyses ⁴	Fines	÷	10.4																													
in-Size	Sand		67.0																													
	Gravel	· · I	22.6																													
	Wet Unit t. Weight	 												;																		
			11.6	7.9	23.8	5.7	17.4	47.9	23.0	23.2	30.3	22.3	18.0	21.5	25.5	18.0	15.2		41.6	84.1	53.5	59.8	59.3	58.9	41.3	66.6	26.6	28.3	30.7	28.6	40.4	26.7
	Geologic Unit ³		HB	HB	HLS	HLS	HLS	QPNL	QPNL	QPNL	QPNL	QPNL	QPNF	QPNF	QPNF	QPNF	QPNF	HF	HF	HF	HF	HF	HF	HF	HF	HF	HA	HA	HA	HA	HE	HA
	USCS ²	· · · ·	sc	SC	GC	GC	ЗG	ML	ML	ML	ML	ML	SP-SM	SP-SM	SP-SM	SP-SM	SP-SM	SP	ML	CH	CH	CH	СН	CH	CH	CH	SP	SP	SP	SP	ML	SP-SM
	Blow Count		40	30	26	44	50	67	66	66	100	50/5"	50/5"	50/4.5"	60/6"	50/5"	62/5.5"	1	0	0	0	1		1	1	10	10	11	12	19	8	8
	Sample Type ¹		SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	GRAB	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT
	Sample No.		10	12	14	15	16	17	18	18	19	20	21	22	23	24	25	ı		2	2	Э	4	5	5	6	6	7	8	6	10	10
			32.5	42.5	52.5	57.5	62.5	67.5	72.5	73.5	77.5	82.5	87.5	92.5	97.5	102.5	107.5	2.5	7.0	10.0	11.0	12.5	15.0	17.5	18.5	20.0	20.5	22.5	27.5	32.5	37.5	37.7
	Boring No.		SD-121	SD-121	SD-121	SD-121	SD-121	SD-121	SD-121	SD-121	SD-121	SD-121	SD-121	SD-121	SD-121	SD-121	SD-121	SD-122	SD-122	SD-122	SD-122	SD-122	SD-122	SD-122	SD-122	SD-122	SD-122	SD-122	SD-122	SD-122	SD-122	SD-122

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 32 of 36 (see page 36 for notes)

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

'		· · · · · · · · · · · · · · · · · · ·					: · · ·	in-Size	Grain-Size Analyses ⁺	2.3		Plasticity ⁵		Othe	r Tests P	Other Tests Performed ⁶
	Sample	Blow		Geologic	Water	Wet Unit	2.4 ± 1.			l ^e sterio e	Liquid	Plastic	Non-	[ßi	u -1(uois
	Type	Count (blows/foot)	USCS ²	Unit ³	Content (%)	t Weight G (pcf) (ravel %)	Sand (%)	Fines (%)	Ωµm (%)	Limit	Limit	Plastic	Triax Jest	Consci oitebi	Cyclic Shear Cyclic
	SPT	6	SP-SM	HA					11.0							
	SPT	7	SP-SM	HA	39.5											
	SPT	13	SP-SM	HA	30.9											
	SPT	7	SP-SM	HA	36.4											
	SPT	12	SP-SM	HA	33.1				10.7							
	SPT	6	SP-SM	HA	49.4											
18	SPT	80	SP-SM	HA	37.7											
19	SPT	1	ML	HA	44.4											
20	SPT	12	SP-SM	HA	71.3											
21	SPT	10	SP-SM	HA	36.1				· ·•							
22	SPT	15	SP-SM	HA	35.0											
23	SPT	12	SM	HA	34.3											
24	SPT	16	SM	HA	30.3											-
25	SPT	21	SM	HA	57.0											
26	SPT	25	SM	HA	24.2											
28	SPT	9	ML	HA	37.9				55.8							
29	SPT	14	ML	HA	36.6											
30	SPT	80	ML	HA	33.3											
31	SPT	1	ML	HE	32.9											
33	SPT	0	ML	HE	40.7				96.8	15.3	42	29				
36	OSTER	•	ML	HE												×
37	SPT	0	ML	HE	50.1											×
38	SPT	12	ML	HE	28.9										 	
39	SPT	0	ML	HE	40.2						38	29				
40	SPT	0	ML	HE	35.5					_						
41	SPT	2	SC	HRW	15.7											
42	SPT	19	SC	HRW	14.9											
3	SPT	93	SP-SM	QPGO	21.2											
44	SPT	71	SP-SM	QPGO	16.4											
44	SPT	12	ML	OPGT	7.7											

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 33 of 36 (see page 36 for notes)

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

		test												ŀ			-									1						
prmed	noison	Cori Shea				 													-				 							-	-	
s Perf	JIC	Cycl																														
Other Tests Performed ⁶	-loz noi	no) itabi																														
Othe	lsixı	Tria Test																														
	Non-	Plastic																														
Plasticity⁵	Plastic	Limit		27		22										27																
		Imit		41		50										52																
es 4	ſ	(%)																														
Grain-Size Analyses ⁴		Fines (%)											22.7																			
in-Size	3	Sand (%)																														
Gra		(%)																														
	Wet Unit	weight (pcf)																														
	Water		1 1	28.4	28.5	24.0	24.6	25.6	31.3	30.6	16.3	72.2	35.4	33.2	45.8	50.9	52.2	56.7	37.8	264.0	31.4	15.0	7.1	13.3	5.0	8.8	12.4	12.8	13.0	18.0	15.3	20.7
	Geologic		QPGO	QPGL	QPGL	QPGL	QPGL	QPGL	QPGL	QPGL	HF	HF	HF	HF	HE	HE	HE	HE	HE	HP	QVRL	QPNF	QPNF	QPNF	QPNF	QPNF	QPNF	QPNF	QPNF	QPNF	QPNF	QPNF
· ····	1602	C)CO	SM	CL	CL	С	cL	CL	CL	cſ	SM	SM	SM	SM	НО	HO	HO	HO	HO	PT	cL	SM	GM	GM	GM	GM	GM	SP-SM	SP-SM	SP-SM	SP-SM	SM
	•	(blows/foot)	74	74	28	32	34	28	32	51	50/5"	8	80	2	2	0	0	0	4	6	6	74	93/11"	50/6"	50/2"	100/5"	150/5"		83/6"		78/6"	150/5"
· · ·	Sample Tune ¹	1 ype	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT
	Sample	-01	45	45	46	47	48	49	51	52	2	3	5	6	7	6	10	11	13	14	14	15	16	17	18	20	21	22	23	24	25	26
		Deptn (feet)	203.5	204.0	207.5	212.5	217.5	222.5	227.0	232.5	10.0	12.5	17.5	20.0	25.0	35.0	40.0	45.0	50.5	55.0	56.0	60.0	65.0	70.0	75.0	85.0	90.0	95.0	100.0	105.0	110.0	115.0
	Boring		SD-122	SD-122	SD-122		SD-122	SD-122	SD-122	SD-122	SD-205	SD-205	SD-205	SD-205	SD-205	SD-205	SD-205	SD-205	SD-205	SD-205	SD-205	SD-205	SD-205	SD-205	SD-205	SD-205	SD-205	SD-205	SD-205	SD-205	SD-205	SD-205

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 34 of 36 (see page 36 for notes)

TABLE D-2 SUMMARY OF LABORATORY TESTING - SODO

9	2129T			Ē																										ī 1	
Other Tests Performed ⁶	Shear Corrosion																														
Perfo	Cyclic																1														
Tests	Consol- idation																														
Other	Triaxial Test																														
· · ·															_								 					<u> </u>			
ty ⁵	c Non- Plastic							 			 												 						 		
lasticit	Plastic Limit														!			16				1					 				
Plasticity ⁵	Liquid																	35													1
	^{-2р} ш (%)												 					11.2	•					12.0			17.9				9.2
Grain-Size Analyses ⁴	Fines <														32.5			32.7						67.7			50.1		 		31.6
-Size A	Sand F (%)														67.3			6.99						29.6			44.7				56.8
Grain	Gravel S (%)														0.3 (0.4 6						2.7 2			5.2 2				11.6
	5																														-
	Wet Unit t Weight C																														
	Water Content (%)		7.5	22.7	16.2	16.5	13.7	16.6	18.1	22.7	24.8	29.6	31.6	330.3	22.4	12.4	11.8	16.1	23.1	12.9	16.8	11.3	17.7	21.3	10.5	11.0	20.6	11.0	13.6	17.5	17.5
	Geologic Unit ³	QPNF	QPNF	HF	HF	HF	HF	HF	HF	HF	HF	HF	HB	HE	HB	HB	HB	HLS	HLS	HLS	HLS	HLS	HLS	HLS	HLS	HLS	HLS	HLS	HLS	HLS	HLS
	USCS ²	SM	SM	CL	CL	CL	CL	SM	SM	SM	SM	SM	GP-GM	ΡT	GM	GM	GM	SC	sc	sc	sc	SC	sc	CL	СĽ	sc	sc	sc	sc	sc	sc
	Blow Count (blows/foot)	250/4"	300/3"	8	4	ę	7	6	6	5	5	5	12 0	11	5	12	42	26	19	59	56	43	22	∞	50/3"	57	31	06	89	60	44
	Sample Type ¹	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT	SPT
	Sample No.	28	29	1	2	3	4	5	5	6	6	8	6	10	12	13	14	15	16	17	18	19	21	22	23	1	2	ю	4	5	9
	Top Depth (feet)	125.0	130.0	7.5	10.0	12.5	15.0	17.5	18.5	20.0	21.0	30.0	35.0	40.0	50.0	55.0	60.0	65.0	70.0	75.0	80.0	85.0	95.0	100.0	105.0	60.0	70.0	80.0	90.0	95.0	100.0
	Boring No.	SD-205	SD-205	SD-206	SD-206	SD-206	SD-206	SD-206	SD-206	SD-206	SD-206	SD-206	SD-206	SD-206	SD-206	SD-206	SD-206	SD-206	SD-206	SD-206	SD-206	SD-206	SD-206	SD-206	SD-206	SD-206A	SD-206A	SD-206A	SD-206A	SD-206A	SD-206A

21-1-09910-091 REVISED FOR ADDENDUM NO. 095-1

Page 35 of 36 (see page 36 for notes)

			<u> </u>		_					
med ⁶	uoisc	Corre Tests								19
Perfor		Shear								4
Other Tests Performed ⁶	u -[0	Conse Ditabi								4
Oth	lsi	Triax Test								6
2	Non-	Plastic								
Plasticity ⁵	Plastic	Limit								81
	Liquid	Limit								
es ⁴		⊲2µш (%)								112 21
Grain-Size Analyses ⁴	· · · · · · · · · · · · · · · · · · ·	Fines (%)		10.4						112
ain-Size		Sand (%)		87.8 10.4						46
G		Gravel (%)		1.8						4
	Wet Unit	Weight Gravel Sand Fines $<2\mu m$ Limit Limit Plastic $\frac{5}{2}$ $\frac{5}{2}$ (pcf) (%) (%) (%) (%) (%)								14
	Water	Content (%)	17.9	17.2	18.6	13.3	7.8	26.7	26.1	1048
	Geologic	Unit ³	HLS	QPNF	QPNF	QPNF	QPNF	QPNL	QPNL	TESTS:
		USCS ²	sc	SP-SM	SP-SM	SP-SM	SP-SM	ML	ML	MBER OF
	Blow	Count (blows/foot)	91	50/4"	100/5.5"	100/4"	100/5"	50/6"	50/6"	TOTAL NUMBER OF TESTS:
·	Sample Sample	Type	SPT	SPT	SPT	SPT	SPT	SPT	SPT	
	Sample	No.	7	8	6	10	11	12	13	
	Top	Depth (feet)	105.0	110.0	115.0	120.0	125.0	130.0	135.0	
	Boring	No	SD-206A	SD-206A	SD-206A	SD-206A	SD-206A	SD-206A	SD-206A	

SUMMARY OF LABORATORY TESTING - SODO **TABLE D-2**

NOTES:

SPT = Standard Penetration Test (split-spoon) sample. 3SS = 3-inch Split Spoon. PT = Pitcher Tube sample. OSTER = Osterberg tube sample. GRAB = Grab Sample. Ŀ.

- USCS = Unified Soil Classification System. See Figure A-1 in Appendix A for explanation of classifications. <u>ч ч 4</u>
 - See Table A-1 for a description of the geologic units.
- See Appendix D.1 for plots of the grain-size curves. Gravel = percent larger than 3/4 inch. Sand = percent of soil between 3/4 inch and 0.08 mm. Fines = percent passing the No. 200 sieve (0.08 mm). 2 mm = micrometers = clay fraction
 - See Appendix D.2 for plasticity (Atterberg Limits) plots. . v
- See Appendix D.3 through D.6 for triaxial test, consolidation test, cyclic shear test, and corrosion test results.

APPENDIX D.1

GRAIN SIZE DISTRIBUTION

APPENDIX D.1

GRAIN SIZE DISTRIBUTION

TABLE OF CONTENTS

LIST OF FIGURES

Figure No.

West Sea	
D.1-1	Grain Size Distribution, Boring WS-101
D.1-2	Grain Size Distribution, Boring WS-102
D.1-3	Grain Size Distribution, Boring WS-103
D.1-4	Grain Size Distribution, Boring WS-104
D.1-5	Grain Size Distribution, Boring WS-105
D.1-6	Grain Size Distribution, Boring WS-106
D.1-7	Grain Size Distribution, Boring WS-107
D.1-8	Grain Size Distribution, Boring WS-110
D.1-9	Grain Size Distribution, Boring WS-111
D.1-10	Grain Size Distribution, Boring WS-112
D.1-11	Grain Size Distribution, Boring WS-113
D.1-12	Grain Size Distribution, Boring WS-114
D.1-13	Grain Size Distribution, Boring WS-116
D.1-14	Grain Size Distribution, Boring WS-117
D.1-15	Grain Size Distribution, Boring WS-119
D.1-16	Grain Size Distribution, Boring WS-201
D.1-17	Grain Size Distribution, Boring WS-202
C.D.	
$\underline{\text{SoDo}}$	Croin Size Distribution Devine CD 101 (2 shoots)
D.1-18	Grain Size Distribution, Boring SD-101 (2 sheets)
D.1-19	Grain Size Distribution, Boring SD-102
D.1-20	Grain Size Distribution, Boring SD-103
D.1-21	Grain Size Distribution, Boring SD-104
D.1-22	Grain Size Distribution, Boring SD-104A
D.1-23	Grain Size Distribution, Boring SD-105
D.1-24	Grain Size Distribution, Boring SD-106
D.1-25	Grain Size Distribution, Boring SD-107 (2 sheets)
D.1-26	Grain Size Distribution, Boring SD-108
D.1-27	Grain Size Distribution, Boring SD-109
D.1-28	Grain Size Distribution, Boring SD-110

- D.1-29 Grain Size Distribution, Boring SD-111
- D.1-30 Grain Size Distribution, Boring SD-112

TABLE OF CONTENTS (CONT.)

SHANNON & WILSON, INC.

LIST OF FIGURES (CONT.)

Figure No.

- D.1-31 Grain Size Distribution, Boring SD-113
- D.1-32 Grain Size Distribution, Boring SD-114
- D.1-33 Grain Size Distribution, Boring SD-115
- D.1-34 Grain Size Distribution, Boring SD-116
- D.1-35 Grain Size Distribution, Boring SD-117
- D.1-36 Grain Size Distribution, Boring SD-118
- D.1-37 Grain Size Distribution, Boring SD-119
- D.1-38 Grain Size Distribution, Boring SD-120
- D.1-39 Grain Size Distribution, Boring SD-121
- D.1-40 Grain Size Distribution, Boring SD-122
- D.1-41 Grain Size Distribution, Boring SD-205
- D.1-42 Grain Size Distribution, Boring SD-206
- D.1-43 Grain Size Distribution, Boring SD-206A

<u>Downtown</u>

- D.1-44 Grain Size Distribution, Boring DT-101
- D.1-45 Grain Size Distribution, Boring DT-102
- D.1-46 Grain Size Distribution, Boring DT-103
- D.1-47 Grain Size Distribution, Boring DT-104
- D.1-48 Grain Size Distribution, Boring DT-201

Seattle Center

- D.1-49 Grain Size Distribution, Boring SC-101
- D.1-50 Grain Size Distribution, Boring SC-102
- D.1-51 Grain Size Distribution, Boring SC-103
- D.1-52 Grain Size Distribution, Boring SC-104
- D.1-53 Grain Size Distribution, Boring SC-105
- D.1-54 Grain Size Distribution, Boring SC-106
- D.1-55 Grain Size Distribution, Boring SC-201

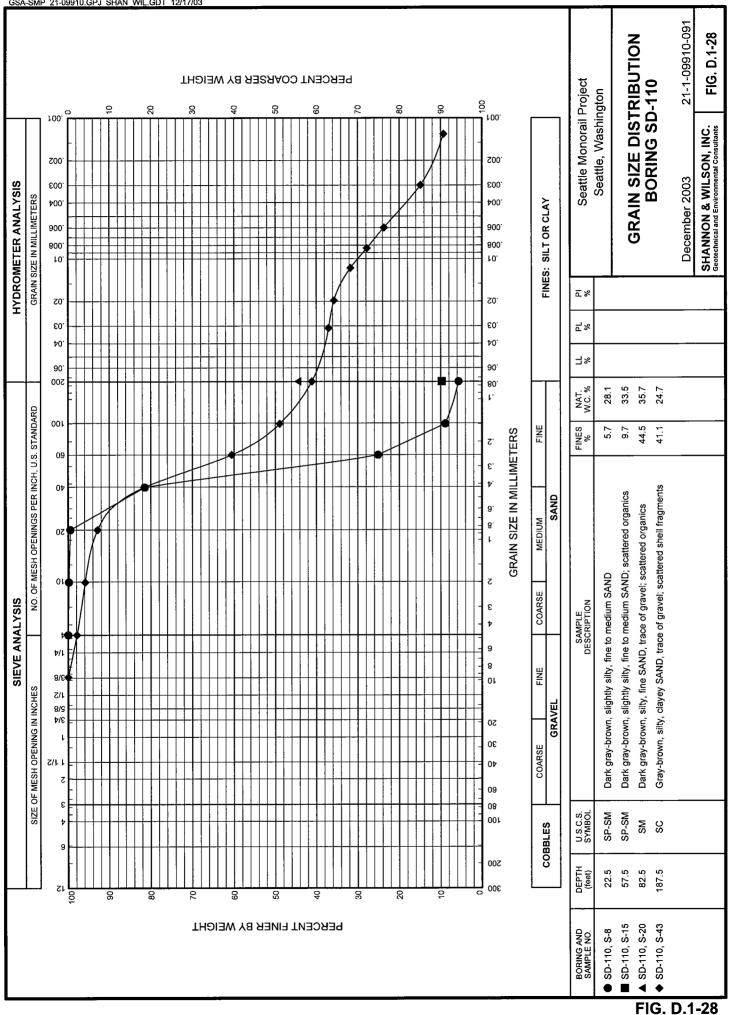
Interbay

- D.1-56 Grain Size Distribution, Boring IB-101
- D.1-57 Grain Size Distribution, Boring IB-102
- D.1-58 Grain Size Distribution, Boring IB-103
- D.1-59 Grain Size Distribution, Boring IB-104
- D.1-60 Grain Size Distribution, Boring IB-105
- D.1-61 Grain Size Distribution, Boring IB-106
- D.1-62 Grain Size Distribution, Boring IB-107
- D.1-63 Grain Size Distribution, Boring IB-108
- D.1-64 Grain Size Distribution, Boring IB-109
- D.1-65 Grain Size Distribution, Boring IB-111
- D.1-66 Grain Size Distribution, Boring IB-112

LIST OF FIGURES (CONT.)

Figure No.

D.1-67	Grain Size Distribution, Boring IB-113
--------	--


- Grain Size Distribution, Boring IB-114 D.1-68
- D.1-69 Grain Size Distribution, Boring IB-116
- D.1-70 Grain Size Distribution, Boring IB-117
- Grain Size Distribution, Boring IB-118 D.1-71 D.1-72
- Grain Size Distribution, Boring IB-119
- Grain Size Distribution, Boring IB-120 D.1-73
- D.1-74 Grain Size Distribution, Boring IB-121
- D.1-75 Grain Size Distribution, Boring IB-122
- D.1-76 Grain Size Distribution, Boring IB-123
- D.1-77 Grain Size Distribution, Boring IB-124
- D.1-78 Grain Size Distribution, Boring IB-125
- D.1-79 Grain Size Distribution, Boring IB-126
- Grain Size Distribution, Boring IB-127 D.1-80 D.1-81 Grain Size Distribution, Boring IB-203

Ballard Crossing

D.1-82	Grain Size Distribution, Boring BX-101
D.1-83	Grain Size Distribution, Boring BX-102
D.1-84	Grain Size Distribution, Boring BX-103
D.1-85	Grain Size Distribution, Boring BX-104
D.1-86	Grain Size Distribution, Boring BX-105
D.1-87	Grain Size Distribution, Boring BX-106
D.1-88	Grain Size Distribution, Boring BX-107
D.1-89	Grain Size Distribution, Boring BX-108
D.1-90	Grain Size Distribution, Boring BX-109

Ballard

D.1-91	Grain Size Distribution, Boring BD-101
D.1-92	Grain Size Distribution, Boring BD-102
D.1-93	Grain Size Distribution, Boring BD-103
D.1-94	Grain Size Distribution, Boring BD-104
D.1-95	Grain Size Distribution, Boring BD-105
D.1-96	Grain Size Distribution, Boring BD-106
D.1-97	Grain Size Distribution, Boring BD-107
D.1-98	Grain Size Distribution, Boring BD-108
D.1-99	Grain Size Distribution, Boring BD-109
D.1-100	Grain Size Distribution, Boring BD-110
D.1-101	Grain Size Distribution, Boring BD-201

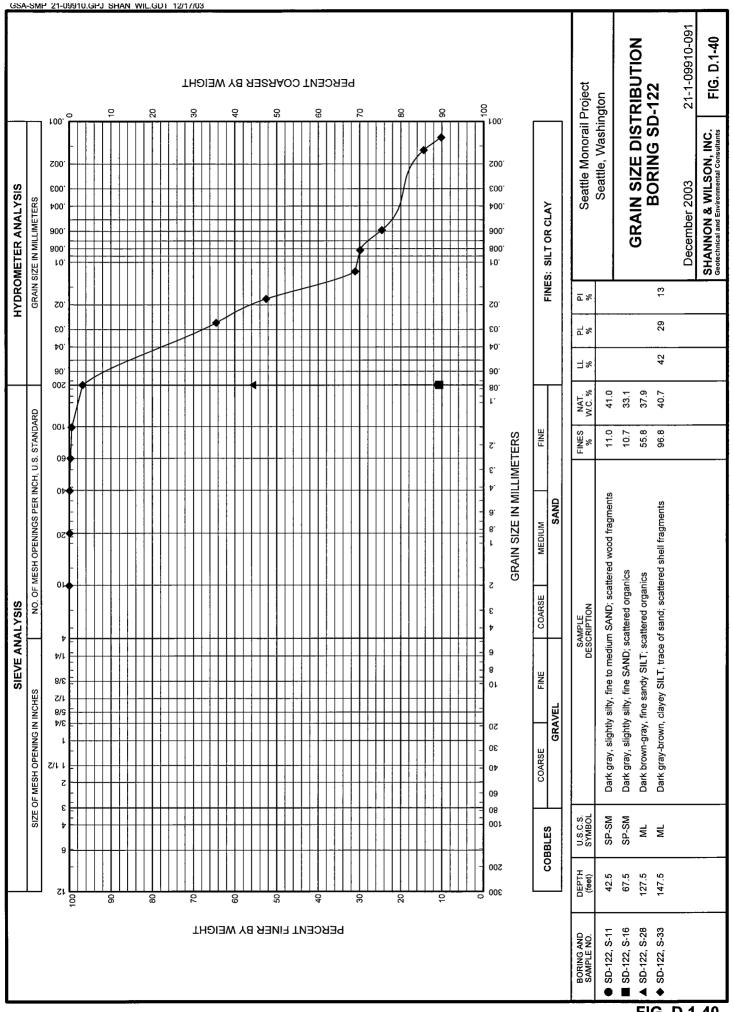


FIG. D.1-40

APPENDIX D.2

ATTERBERG LIMITS

APPENDIX D.2

ATTERBERG LIMITS

TABLE OF CONTENTS

LIST OF FIGURES

Figure No.

West Seattle

- D.2-1 Plasticity Chart, Boring WS-105
- D.2-2 Plasticity Chart, Boring WS-108
- D.2-3 Plasticity Chart, Boring WS-109
- D.2-4 Plasticity Chart, Boring WS-110
- D.2-5 Plasticity Chart, Boring WS-111
- D.2-6 Plasticity Chart, Boring WS-112
- D.2-7 Plasticity Chart, Boring WS-113
- D.2-8 Plasticity Chart, Boring WS-114
- D.2-9 Plasticity Chart, Boring WS-115
- D.2-10 Plasticity Chart, Boring WS-117
- D.2-11 Plasticity Chart, Boring WS-118
- D.2-12 Plasticity Chart, Boring WS-119
- D.2-13 Plasticity Chart, Boring WS-203

<u>SoDo</u>

- D.2-14 Plasticity Chart, Boring SD-101
- D.2-15 Plasticity Chart, Boring SD-102
- D.2-16 Plasticity Chart, Boring SD-103
- D.2-17 Plasticity Chart, Boring SD-104
- D.2-18 Plasticity Chart, Boring SD-104A (2 sheets)
- D.2-19 Plasticity Chart, Boring SD-105
- D.2-20 Plasticity Chart, Boring SD-106
- D.2-21 Plasticity Chart, Boring SD-107
- D.2-22 Plasticity Chart, Boring SD-108 (2 sheets)
- D.2-23 Plasticity Chart, Boring SD-109
- D.2-24 Plasticity Chart, Boring SD-110
- D.2-25 Plasticity Chart, Boring SD-111
- D.2-26 Plasticity Chart, Boring SD-111A
- D.2-27 Plasticity Chart, Boring SD-112
- D.2-28 Plasticity Chart, Boring SD-113

LIST OF FIGURES (CONT.)

Figure No.

- D.2-29 Plasticity Chart, Boring SD-114
- D.2-30 Plasticity Chart, Boring SD-115
- D.2-31 Plasticity Chart, Boring SD-116
- D.2-32 Plasticity Chart, Boring SD-117
- D.2-33 Plasticity Chart, Boring SD-118
- D.2-34 Plasticity Chart, Boring SD-119
- D.2-35 Plasticity Chart, Boring SD-121
- D.2-36 Plasticity Chart, Boring SD-122
- D.2-37 Plasticity Chart, Boring SD-205
- D.2-38 Plasticity Chart, Boring SD-206

Downtown

- D.2-39 Plasticity Chart, Boring DT-102
- D.2-40 Plasticity Chart, Boring DT-104
- D.2-41 Plasticity Chart, Boring DT-106

Seattle Center

- D.2-42 Plasticity Chart, Boring SC-103
- D.2-43 Plasticity Chart, Boring SC-105

Interbay

- D.2-44 Plasticity Chart, Boring IB-101
- D.2-45 Plasticity Chart, Boring IB-102
- D.2-46 Plasticity Chart, Boring IB-103
- D.2-47 Plasticity Chart, Boring IB-105
- D.2-48 Plasticity Chart, Boring IB-106
- D.2-49 Plasticity Chart, Boring IB-107
- D.2-50 Plasticity Chart, Boring IB-110
- D.2-51 Plasticity Chart, Boring IB-111
- D.2-52 Plasticity Chart, Boring IB-115
- D.2-53 Plasticity Chart, Boring IB-116
- D.2-54 Plasticity Chart, Boring IB-120
- D.2-55 Plasticity Chart, Boring IB-121
- D.2-56 Plasticity Chart, Boring IB-123
- D.2-57 Plasticity Chart, Boring IB-126
- D.2-58 Plasticity Chart, Boring IB-127
- D.2-59 Plasticity Chart, Boring IB-201
- D.2-60 Plasticity Chart, Boring IB-202
- D.2-61 Plasticity Chart, Boring IB-203

LIST OF FIGURES (CONT.)

Figure No.

Ballard Crossing

- D.2-62 Plasticity Chart, Boring BX-102
- D.2-63 Plasticity Chart, Boring BX-103
- D.2-64 Plasticity Chart, Boring BX-104
- D.2-65 Plasticity Chart, Boring BX-106
- D.2-66 Plasticity Chart, Boring BX-107
- D.2-67 Plasticity Chart, Boring BX-108
- D.2-68 Plasticity Chart, Boring BX-109

<u>Ballard</u>

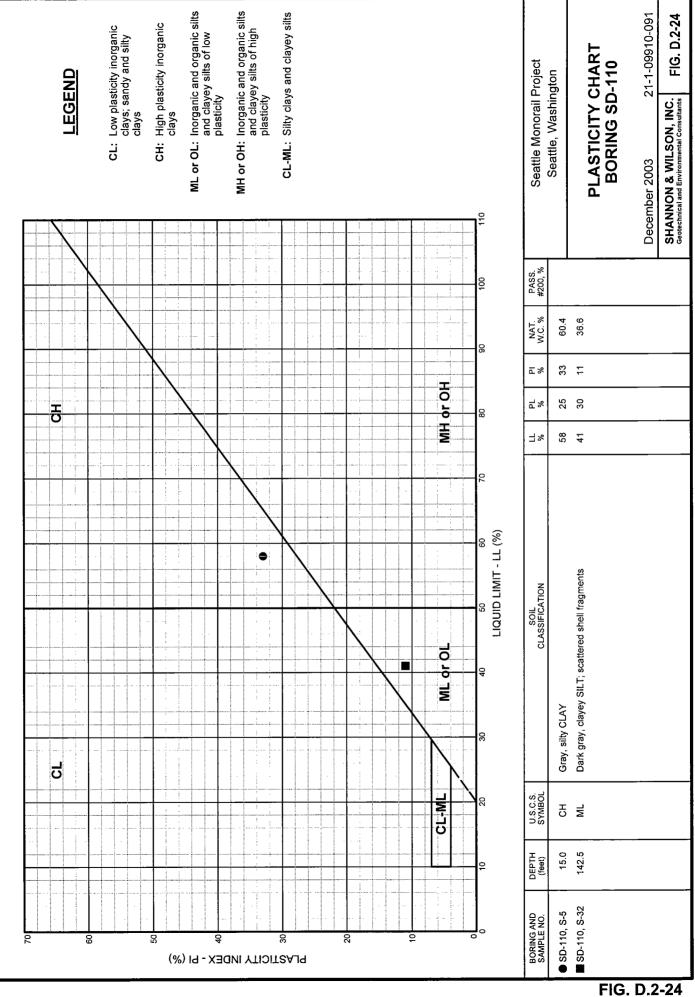
- D.2-69 Plasticity Chart, Boring BD-101
- D.2-70 Plasticity Chart, Boring BD-201

LIST OF FIGURES (CONT.)

Figure No.

- D.2-29 Plasticity Chart, Boring SD-114
- D.2-30 Plasticity Chart, Boring SD-115
- D.2-31 Plasticity Chart, Boring SD-116
- D.2-32 Plasticity Chart, Boring SD-117
- D.2-33 Plasticity Chart, Boring SD-118
- D.2-34 Plasticity Chart, Boring SD-119
- D.2-35 Plasticity Chart, Boring SD-121
- D.2-36 Plasticity Chart, Boring SD-122
- D.2-37 Plasticity Chart, Boring SD-205
- D.2-38 Plasticity Chart, Boring SD-206

Downtown


- D.2-39 Plasticity Chart, Boring DT-101 and 102
- D.2-40 Plasticity Chart, Boring DT-104
- D.2-41 Plasticity Chart, Boring DT-106

Seattle Center

- D.2-42 Plasticity Chart, Boring SC-103
- D.2-43 Plasticity Chart, Boring SC-105

<u>Interbay</u>

- D.2-44 Plasticity Chart, Boring IB-101
- D.2-45 Plasticity Chart, Boring IB-102
- D.2-46 Plasticity Chart, Boring IB-103
- D.2-47 Plasticity Chart, Boring IB-105
- D.2-48 Plasticity Chart, Boring IB-106
- D.2-49 Plasticity Chart, Boring IB-107
- D.2-50 Plasticity Chart, Boring IB-110
- D.2-51 Plasticity Chart, Boring IB-111
- D.2-52 Plasticity Chart, Boring IB-115
- D.2-53 Plasticity Chart, Boring IB-116
- D.2-54 Plasticity Chart, Boring IB-120
- D.2-55 Plasticity Chart, Boring IB-121
- D.2-56 Plasticity Chart, Boring IB-123
- D.2-57 Plasticity Chart, Boring IB-126
- D.2-58 Plasticity Chart, Boring IB-127
- D.2-59 Plasticity Chart, Boring IB-201
- D.2-60 Plasticity Chart, Boring IB-202

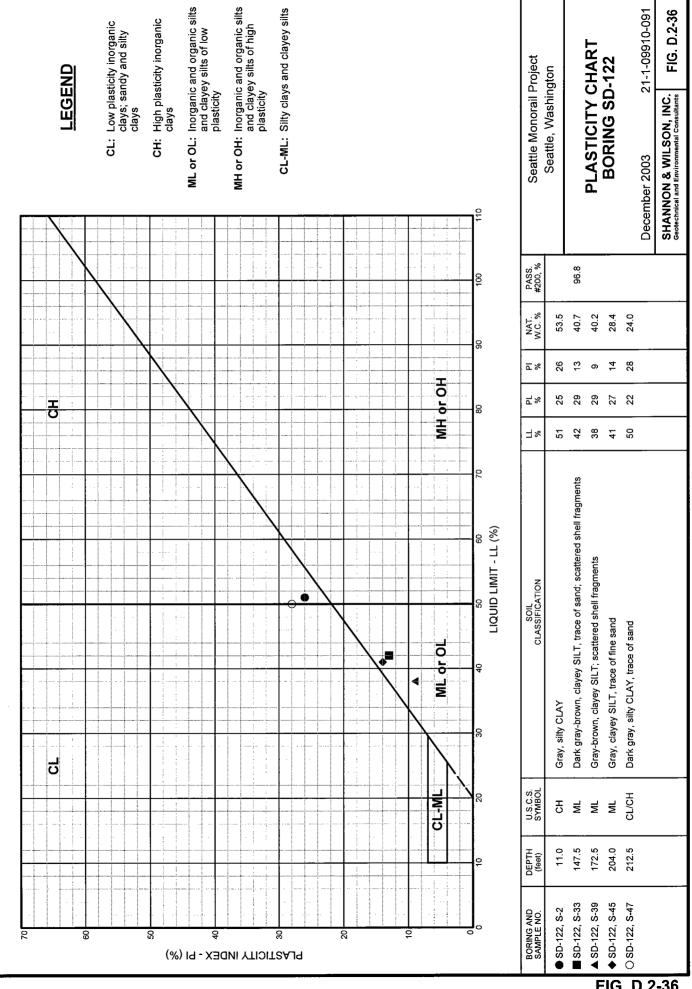


FIG. D.2-36

Addendum No. 095-1

Geotechnical Data Report (S&W Document Nos. 095-BJ/104-BJ) April 2, 2004

ATTACHMENT 18

Revised Subappendix D.5 for Appendix D:

Subappendix D.5 and cyclic shear test report of previous report (see attached).

APPENDIX D.5

CYCLIC SHEAR TESTS

Report to Shannon & Wilson, Inc., from Oregon State University (OSU), 01/21/2004-(63 sheets)"Cyclic Testing of Silt-Rich Soils from the Seattle Monorail Alignment, Seattle, Washington", dated January 21, 2004.

21-1-09910-091 095-BJ REVISED FOR ADDENDUM NO. 095-1

CYCLIC TESTING OF SILT-RICH SOILS FROM THE SEATTLE MONORAIL ALIGNMENT SEATTLE, WASHINGTON

SUMMARY REPORT PREPARED FOR SHANNON & WILSON, INC. SEATTLE, WA

January 21, 2004

Stephen E. Dickenson, Ph.D. Associate Professor

Jutha Sunitsakul Graduate Research Assistant

Geotechnical Engineering Group Department of Civil, Construction, and Environmental Engineering 202 Apperson Hall Oregon State University Corvallis, Oregon 97331

INTRODUCTION

This summary report presents the results of a geotechnical laboratory testing program conducted for the Seattle office of Shannon & Wilson, Inc (S&W). The purpose of the testing was to evaluate the nonlinear cyclic behavior of low to moderate plasticity silts from the alignment of the proposed Seattle Monorail located adjacent to Elliot Bay in Seattle. High quality samples of silty soils were transported to the Portland office of S&W then delivered by personnel from Oregon State University (OSU) to the Geotechnical Laboratory on campus. The laboratory program consisted of a suite of cyclic stress-controlled triaxial tests performed to elucidate the variation of stiffness and damping with shear strain during loading. The triaxial procedures consisted of anisotropic consolidation to match the in situ mean effective confining stress, followed by multi-stage cyclic loading at increasingly large deviatoric stresses in order to evaluate the reduction in stiffness and increase in damping with shear strain. The low strain soil stiffness (G_{max} , or associated shear wave velocity V_s) used to normalize the stiffness at moderate strains was obtained using bender elements that produce and receive shear waves in the soils prior to cyclic loading. Hysteric damping was computed from the stress-strain response of the soil measured during cyclic testing. In order to determine the undrained strength ratio (s_u/σ_c) of the silts after cyclic loading a monotonic ramp test was performed by slowly increasing the deviator stress until the sample failed or the rating of the load cell was reached.

Specific aspects of the testing program are outlined in the following sections. Five tests were performed on silt-rich soils from the project site. The results of the first test are not presented in this report due to irregularities in the test specimen. This specimen failed along a silty sand seam during preparation and handling. The specimen was tested as a "preparation and practice" sample but the test results are not applicable for the project. Four subsequent tests were successfully performed and the results are presented herein.

TESTING EQUIPMENT

Cyclic testing was performed using the CKC e/p pneumatic loader under the control of ATS software (Automated Testing System, version 3.12). Axial loads were measured with a +/- 500 pound capacity Interface load cell. Axial deformations were measured with a Schaevitz Engineering 2.00 inch LVDT. Air and pore water pressures were measured with Validyne transducers of varying sensitivities. All of the instrumentation and other components of the system were calibrated prior to testing.

SPECIMEN PREPARATION AND TESTING

Extrusion and Measurement

Shannon & Wilson provided the undisturbed samples to the geotechnical group at Oregon State University. When a specimen interval was identified in the sample tube an 8 to 10 inch section was carefully cut from the remaining tube using a pipe cutter to

minimize vibrations and tube deformation. The specimen was then extruded from the tube by hand. This technique greatly reduces the soil densification and disturbance that commonly occurs when the entire sample is extruded to yield each specimen and the extrusion loads must overcome the soil-tube adhesion mobilized along the entire sample tube. Once about 1/2 inch of the specimen was extruded, it was trimmed and the material was collected for water content measurements. With the specimen fully extruded it was quickly and carefully set onto the pre-weighted base cap and porous stone. A moist weight was then recorded. The top cap and porous stone were then put into position and a thin membrane was placed around the specimen and sealed at the top and base caps with o-rings. The sample was then placed in the triaxial cell and confined under a vacuum of approximately 2 psi. Measurements of the specimen height and diameter were then recorded both before and after the application of the confining pressure.

Saturation and Consolidation

Immediately after the specimen dimensions were measured, the triaxial cell was assembled around the specimen. The vacuum created a differential pressure such that deaired water would flow from the bottom to the top of the specimen, thus de-airing the sample. The triaxial cell was then placed into the loading frame with the ATS testing system active and filled with de-aired water. Once the sample vacuum reached zero, the sample was back pressure saturated maintaining an effective confining stress of approximately 2 psi.

Changes in the height and volume of the specimens were monitored and recorded throughout the preparation process. Sample saturation was typically monitored prior to consolidation. A "B-value" of 0.96 or greater, was required preceding cyclic testing to guarantee adequate saturation of the specimen. Samples were first isotropically consolidated to the estimated in situ horizontal earth pressure by using an at-rest earth pressure coefficient to 0.6. The isotropic consolidation process was followed the controlled application of an axial deviator load until the vertical stress was equal to the estimated vertical effective stress in the field. The specimen was allowed to consolidate under the anisotropic load.

Cyclic Loading

The staged cyclic loading consisted of 5 uniform, stress-controlled, sinusoidal loading cycles under undrained conditions at a frequency of 0.1 Hz. The cyclic stress ratio (CSR), defined as the peak cyclic single amplitude deviatoric stress divided by two times the effective consolidation stress (Equation 1) is a normalized measure used to denote the intensity of the cyclic loading.

$$CSR = \frac{\sigma_{dev}}{2\sigma'_{con}}$$
 Equation 1

The first stage of cyclic testing consisted of 5 cycles of loading at a very low CSR. The deviatoric load was specified on the basis of system precision and reproducibility, as well as LVDT precision. Test data was recorded by the ATS data acquisition software at 10 to 30 readings per second. These measurements included (a) axial deviatoric load, (b) axial strain, (c) pore pressure, (d) effective confining stress, and (d) chamber pressure.

Several recent laboratory testing programs have demonstrated the complications associated with measuring representative pore pressures in fine-grained soils during relatively quick cyclic loading. The issue is related to the low permeability of the soil, the length of time required for cyclic excess pore pressures to equilibrate throughout the specimen, and for these pore pressures to be measured at the transducers. In triaxial testing, the central portion of the soil specimen is subjected to the most representative loading. This is due to friction mobilized at the end caps of the specimen. The pore pressures generated toward the central portion of the specimen must then propagate to the ends of the specimen where they are measured. In fine-grained soils there is a lag between the generation of the pore pressures in the center of the specimen and the measurement made externally. It is common for cyclic testing of sandy soils to be conducted at a loading frequency of 1 Hz. This is appropriate for sand however this loading rate has been demonstrated to be too fast to allow for accurate pore pressure measurements in silts. A loading rate of 0.1 Hz has been used to reduce the effects of this lag on the measured pore pressures. A loading rate of 0.1 Hz was used in all cyclic tests performed in this investigation.

The excess pore pressures induced by cyclic loading were monitored between each 5 cycle load increment. The specimen was allowed to re-consolidate prior to subsequent loading if significant pore pressure generation was observed. Progressively larger CSR values were used during the subsequent tests in order to measure the stress-strain behavior of the specimens. A stress-controlled undrained static test was performed following the cyclic tests. Data recorded from these tests included the same measurements as those taken during the cyclic test (deviatoric stress, axial strain, effective confining stress, and chamber pressure). Due to the slower rate of loading, data was recorded every 20 seconds.

Pertinent soil properties and index properties for each of the specimens are provided in Table 1.

Table 1: Specimen Properties

Test No.	Boring No.	Sample No.	Depth (ft)	Insitu Water Content (%)	In Situ Unit Weight (pcf)	σ _c ' (psi)	Gmax (psi)	LL	PI
1	SD-122	S-36	160	47	104	46.8	9648	41	14
2	SD-122	S-36	161	48	104	47.2	9327	41	14
3	SD-103	S-42	190	42	108	47.2	11933	43	15
4	SD-103	S-50	225	46	107	56.2	12970	59	30

ESTIMATION OF SHEAR MODULUS AND DAMPING RATIO

The low-strain shear modulus was obtained for each specimen using bender elements. Excitation of the bender piezo-crystal at the base of the sample generates a shear pulse that is transmitted to a bender element at the top of the specimen. The time different between the signal and the receiver is used to obtain the shear wave velocity of the specimen at that confining stress. The V_s value is then converted to G_{max} .

The stiffness of the soil at larger strains was determined from the stress-strain (i.e., hysteresis) loops measured during cyclic loading. A short duration loading consisting of 5 cycles was adequate to obtain the stiffness at each load increment. The axial strains computed from the axial deformation measured with a LVDT was converted to shear strain by multiplying the axial strain by 1.73 (Vucetic and Dobry, 1986). The modulus at each cyclic loading was estimated using Equation 2 (refer to Figure 1 for notation). The shear strain used to represent this secant shear modulus is the average of shear strains in compression (γ_{pc}).

$$G_{eq} = \frac{\tau_{pc} + \tau_{pe}}{\gamma_{pc} + \gamma_{pe}}$$
 Equation 2

Damping ratio was computed by way of Equation 2. A_{loop} is the area of hysteresis loop of stress versus strain during cyclic testing. A trapezoid method is used to estimate the A_{loop} .

$$\xi = \frac{A_{loop}}{2\pi G_{sec} \gamma_{avg}^2}$$
 Equation 3

It should be noted that since the specimens were anisotropically consolidated they are subjected to a deviatoric stress prior to cyclic loading as they would be in the field. When cyclic loads corresponding to small CSR values are applied compressive stresses are much smaller than the static deviatoric stress required for the anisotropic consolidation and there is no stress reversal as shown in Figure 2. As the loads increase a condition is reached where the cyclic stresses are large enough to result in stress reversal. At this point the hysteresis loops measured in cyclic stress-controlled triaxial tests are often not symmetric. This behavior was observed and the variation in the modulus values (i.e., symmetric versus non-symmetric loops) was evaluated.

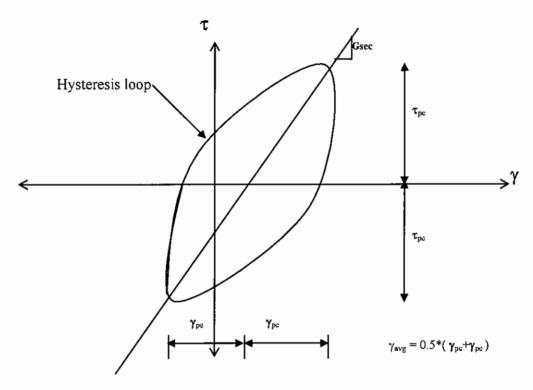


Figure 1: Stress and strain notation used in this data report.

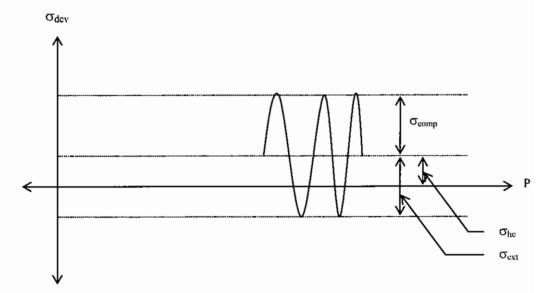


Figure 2: Deviatoric stress notation used in this data report.

TESTING RESULTS

The stress-strain plots for each of the load sequences for all 4 tests are shown in Appendix A. The modulus reduction data obtained during cyclic testing of the 4 representative samples are summarized in Tables 2.1 to 2.4. The post-cyclic stress-strain behavior of the specimens under monotonic undrained loading is illustrated in Appendix A. These plots can be used to determine the undrained strength ratio (s_u/σ'_m) of the silty soils.

Plots showing the variation of modulus with shear strain are presented in Appendix B. A summary of this data is provided in Figure 3. The overall trends obtained from the cyclic testing are supported by the trends of Vucetic and Dobry (1991) for fine-grained soils with Plasticity Indexes between 0 and 30. The 4 specimens tested had PI values between 14 and 30. It is apparent that the measured trends of modulus with shear strain start to diverge from the established ranges at low shear strain. We feel that this is due more to the limitations of the testing and instrumentation equipment than true soil behavior. The reasons for this assertion are two-fold: (1) the low-strain modulus values are deemed representative due to the relatively high precision of the bender element wave measurement system, and (2) the hysteresis loops shear strains below roughly 0.05 to 0.03 percent are difficult to interpret due to the very small deformations that are associated with these strains and the robust equipment is required to test the soils at the high stresses required for this project. There is obviously a need to balance system sensitivity with higher capacity load cells having lower precision. The data obtained in this investigation supports the use of the established curves for soils having a PI of 15 to 30.

The data for soil damping is presented in Tables 3.1 to 3.4 and in Appendix C. The collective damping data for is shown in Figure 4. The data obtained in this investigation is shown with the variation in damping with shear strain developed by Vucetic and Dobry (1991). The curves for soil with PI 30 and 50 are annotated on the figure. The damping data is consistent with other fine grained soils having PI in this range. This range of PI is slightly higher than that indicated by the modulus relationship however it is in good accord with PI of 30. Based on the cyclic testing performed in this investigation it appears that the material may exhibit slightly more damping than anticipated based on general relationships established for other fine grained soils.

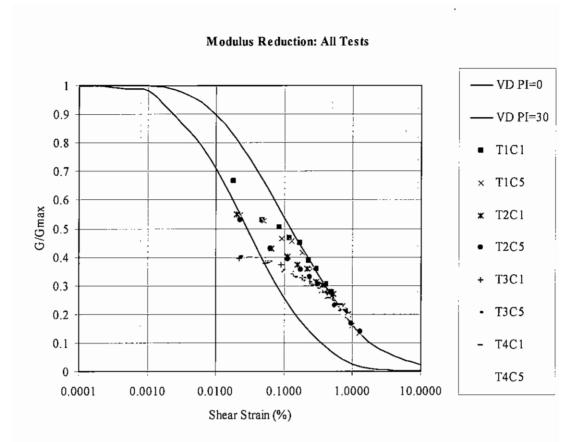


Figure 3: Variation of Soil Modulus with Shear Strain for Four Specimens of Silt.

Damping Ratio: All Tests

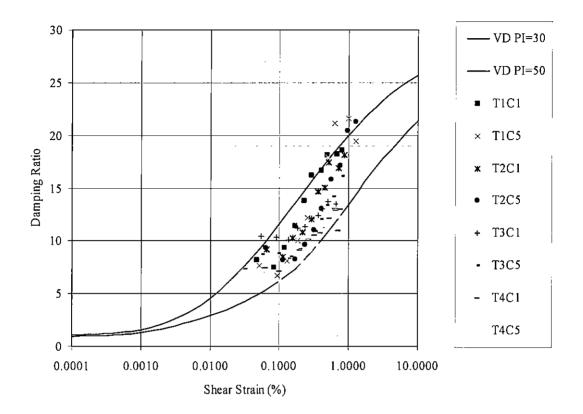


Figure 4: Variation of Soil Damping with Shear Strain for Four Specimens of Silt.

Table 2.1: Stress-strain data for test No. 1 (Boring SD 122, Sample S-36, Depth 160 feet)

			G/G _{max}	0.547	0.528	0.465	0.454	0.415	0.358	0.304	0.247	0.224	0.159	0.134
			$\gamma_{avg}(\%)$	0.023	0.051	0.093	0.130	0.185	0.255	0.355	0.510	0.630	0.985	1.283
		o. 5	G∝((psi)	5275	5098	4486	4385	4000	3451	2930	2382	2159	1533	1294
		Load Cycle No. 5	Υ _Ρ υ (%)	-0.012	-0.045	-0.080	-0.080	-0.040	0.010	0.110	0.260	0.360	0.450	-0.060
		Load	γ _{pe} (%)	0.034	0.057	0.105	0.180	0.330	0.520	0.820	1.280	1.620	2.420	2.505
			τ _{pe} (psi)	-1.0	-2.5	-4.0	-5.4	-7.2	-8.6	-10.0	-11.8	-13.2	-15.0	-16.2
			τ _{pe} (psi)	1.4	2.7	4.3	6.0	7.6	9.0	10.8	12.5	14.0	15.2	17.0
lo. I			G/Gmax	0.667	0.529	0.503	0.468	0.451	0.388	0.360	0.305	0.277	0.227	0.211
Test No.			γ _{avg} (%)	0.018	0.048	0.085	0.120	0.169	0.233	0.295	0.405	0.495	0.680	0.800
		o. 1	G _{et} (psi)	6438	5104	4853	4519	4349	3742	3475	2938	2677	2191	2031
	lements	Load Cycle No.	γ_{pe} (%)	-0.012	-0.044	-0.080	-0.102	-0.112	-0.135	-0.160	-0.240	-0.280	-0.440	-0.600
	n bender e	Load	γ _{pc} (%)	0.025	0.052	060'0	0.137	0.226	0.330	0.430	0.570	0.710	0.920	1.000
	psi: Estimating from bender elements		τ _{ρe} (psi)	-1.0	-2.3	-4.0	-5.2	-6.8	-8.5	-10.0	-11.8	-13.0	-14.8	-16.0
	psi: Estim		τ _{pc} (psi)	1.4	2.6	4.3	5.6	7.9	8.9	10.5	12.0	13.5	15.0	16.5
	9648		σ _{ext} ' (psi)	2.0	5.0	8.1	11.0	14.0	17.2	20.3	23.6	26.5	29.6	32.5
	$G_{max} =$		σ _{he} ' (psi)	25.2	25.4	25.3	25.2	25.1	25.1	25.0	25.1	24.9	24.9	24.7
		o Sten		lst	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th

Table 2.2: Stress-strain data for test No. 2 (Boring SD 122, Sample S-36, Depth 161 feet)

		G/G _{max}	0.529	0.431	0.394	0.356	0.332	0.305	0.271	0.232	0.193	0.169	0.140			
		γ_{avg} (%)	0.023	0.064	0.113	0.173	0.236	0.315	0.411	0.555	0.760	0.975	1.285			
	0. 5	G _{et} (psi)	4934	4016	3673	3319	3093	2841	2530	2162	1803	1579	1304			
	I Cycle N	Υ _Ρ ε (%)	-0.011	-0.045	-0.080	-0.100	-0.090	-0.080	0.000	0.100	0.180	0.300	0.250			
	Load	γ _{pc} (%)	0.034	0.082	0.146	0.245	0.382	0.550	0.822	1.210	1.700	2.250	2.820			
		$\tau_{\rm pc}$ (psi)	-0.9	-2.5	-4.1	-5.5	-7.0	-8.7	-10.0	-11.8	-13.5	-15.0	-16.5			
		τ _{pc} (psi)	1.3	2.7	4.2	6.0	7.6	9.2	10.8	12.2	13.9	15.8	17.0			
		G/G _{ma} ×	0.549	0.429	0.402	0.374	0.358	0.313	0.302	0.280	0.271	0.227	0.200			
		γ _{avg} (%)	0.021	0.065	0.112	0.158	0.219	0.295	0.363	0.453	0.525	0.710	0.870			
	. 1	G _{eq} (psi)	5122	4000	3750	3492	3341	2915	2814	2608	2524	2113	1868			
lements	Cycle No	γ _{ρ0} (%)	-0.019	-0.052	-0.100	-0.125	-0.157	-0.220	-0.230	-0.300	-0.380	-0.500	-0.66			
bender e	Load	γ_{pc} (%)	0.022	0.078	0.124	0.190	0.280	0.370	0.495	0.605	0.670	0.920	1.08			
ating from		$\tau_{p\omega}$ (psi)	-1.0	-2.6	-4.2	-5.3	-7.2	-8.4	-10.0	-11.6	-13.0	-15.0	-16			
psi: Estim		τ_{pc} (psi)	1.1	2.6	4.2	5.7	7.4	8.8	10.4	12.0	13.5	15.0	16.5			
9327		σ _{ext} ' (psi)	1.9	4.9	8.0	10.9	14.0	17.4	20.4	23.6	26.5	29.6	32.6			
G _{max} =		σ _{lic} ' (psi)	25.5	25.5	25.4	25.3	25.2	25.3	25.0	25.0	24.9	24.8	24.8			
	r Sten	2 2 2	lst	2nd	3rd	4th	Sth	6th	7th	8th	9th	10th	11th			
	G _{max} =	$G_{max} = 9327$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		G _{max} = 9327 psi: Estimating from bender elements Load Cycle No. 1 Load Cycle No. 5 Load Cycle No. 1 Load Cycle No. 5 Conc the transmitting from bender elements Conc the transmitting from bender elements Conc the transmitting from transmitting from the transmitting from transmitting from the transmitting from transm	$G_{max} =$ 9327 psi: Estimating from bender elements Load Cycle No. 1 Load Cycle No. 5 Load Cycle No. 1 Load Cycle No. 5 σ_{ext} τ_{pe} γ_{pe} <th colspa<="" td=""><td>$G_{max} =$ 9327 psi: Estimating from bender elements Load Cycle No. 1 Load Cycle No. 1 Load Cycle No. 1 Load Cycle No. 1 $\sigma_{nx'}$ τ_{ps} γ_{ps} <th colspa<="" td=""><td>$G_{max} =$ 9327 ps:: Estimating from bender elements Load Cycle No. 1 Load Cycle No. 1 σ_{nx} τ_{pe} \tau_{pe} \tau_{pe} <th col<="" td=""><td></td><td>G_{max} 9327 psi: Estimating from bender elements Load Cycle No. 1 Load Cycle No. 1 Load Cycle No. 5 σ_{ext}' τ_{pe} τ_{pe} σ_{ext}' σ_{ext}' τ_{pe} σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}'<td></td><td></td></td></th></td></th></td></th>	<td>$G_{max} =$ 9327 psi: Estimating from bender elements Load Cycle No. 1 Load Cycle No. 1 Load Cycle No. 1 Load Cycle No. 1 $\sigma_{nx'}$ τ_{ps} γ_{ps} <th colspa<="" td=""><td>$G_{max} =$ 9327 ps:: Estimating from bender elements Load Cycle No. 1 Load Cycle No. 1 σ_{nx} τ_{pe} \tau_{pe} \tau_{pe} <th col<="" td=""><td></td><td>G_{max} 9327 psi: Estimating from bender elements Load Cycle No. 1 Load Cycle No. 1 Load Cycle No. 5 σ_{ext}' τ_{pe} τ_{pe} σ_{ext}' σ_{ext}' τ_{pe} σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}'<td></td><td></td></td></th></td></th></td>	$G_{max} =$ 9327 psi: Estimating from bender elements Load Cycle No. 1 Load Cycle No. 1 Load Cycle No. 1 Load Cycle No. 1 $\sigma_{nx'}$ τ_{ps} γ_{ps} <th colspa<="" td=""><td>$G_{max} =$ 9327 ps:: Estimating from bender elements Load Cycle No. 1 Load Cycle No. 1 σ_{nx} τ_{pe} \tau_{pe} \tau_{pe} <th col<="" td=""><td></td><td>G_{max} 9327 psi: Estimating from bender elements Load Cycle No. 1 Load Cycle No. 1 Load Cycle No. 5 σ_{ext}' τ_{pe} τ_{pe} σ_{ext}' σ_{ext}' τ_{pe} σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}'<td></td><td></td></td></th></td></th>	<td>$G_{max} =$ 9327 ps:: Estimating from bender elements Load Cycle No. 1 Load Cycle No. 1 σ_{nx} τ_{pe} \tau_{pe} \tau_{pe} <th col<="" td=""><td></td><td>G_{max} 9327 psi: Estimating from bender elements Load Cycle No. 1 Load Cycle No. 1 Load Cycle No. 5 σ_{ext}' τ_{pe} τ_{pe} σ_{ext}' σ_{ext}' τ_{pe} σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}'<td></td><td></td></td></th></td>	$G_{max} =$ 9327 ps:: Estimating from bender elements Load Cycle No. 1 Load Cycle No. 1 σ_{nx} τ_{pe} \tau_{pe} \tau_{pe} <th col<="" td=""><td></td><td>G_{max} 9327 psi: Estimating from bender elements Load Cycle No. 1 Load Cycle No. 1 Load Cycle No. 5 σ_{ext}' τ_{pe} τ_{pe} σ_{ext}' σ_{ext}' τ_{pe} σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}'<td></td><td></td></td></th>	<td></td> <td>G_{max} 9327 psi: Estimating from bender elements Load Cycle No. 1 Load Cycle No. 1 Load Cycle No. 5 σ_{ext}' τ_{pe} τ_{pe} σ_{ext}' σ_{ext}' τ_{pe} σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}'<td></td><td></td></td>		G _{max} 9327 psi: Estimating from bender elements Load Cycle No. 1 Load Cycle No. 1 Load Cycle No. 5 σ_{ext}' τ_{pe} τ_{pe} σ_{ext}' τ_{pe} σ_{ext}' τ_{pe} σ_{ext}' τ_{pe} σ_{ext}' τ_{pe} σ_{ext}' τ_{pe} σ_{ext}' τ_{pe} σ_{ext}' τ_{pe} σ_{ext}' τ_{pe} σ_{ext}' τ_{pe} σ_{ext}' τ_{pe} σ_{ext}' τ_{pe} σ_{ext}' τ_{pe} σ_{ext}' τ_{pe} σ_{ext}' τ_{pe} σ_{ext}' σ_{ext}' τ_{pe} σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' σ_{ext}' <td></td> <td></td>		

mple S-42, Depth 190 feet)	
5-strain data for test No. 3 (Boring SD 103, Sample S-42, Depth 190 feet)	
Table 2.3: Stres	

Г														
			G/G _{mux}	0.400	0.382	0.352	0.331	0.316	0.300	0.275	0.257	0.240	0.219	0.188
			γ_{nvg} (%)	0.023	0.056	0.098	0,145	0.195	0.250	0.325	0.398	0.480	0.590	0.790
		Vo. 5	G _{eq} (psi)	4778	4554	4205	3945	3769	3580	3277	3069	2865	2619	2247
		Load Cycle No. 5	Υ _{ρυ} (%)	-0.010	-0.034	-0.050	-0.077	-0.078	-0,090	-0.090	-0.090	-0.100	-0.120	-0.100
		Loa	γ_{pc} (%)	0.035	0.078	0.145	0.212	0.312	0.410	0.560	0.705	0.860	1.060	1.480
			τ _{ρe} (psi)	-0.8	-2.5	-4.0	-5.4	-7.1	-8.7	-10.4	-11.9	-13.5	-15,2	-17.5
			τ _{pc} (psi)	1.4	2.6	4.2	6.0	7.6	9.2	10.9	12.5	14.0	15.7	18.0
Test No. 3			G/G _{ma} x	0.397	0.380	0.372	0.341	0.327	0.312	0.303	0.275	0.273	0.246	0.213
Test			γ_{avg} (%)	0.022	0.054	0.090	0.138	0.184	0.235	0.290	0.363	0.420	0.510	0.660
		. 1	G _{eq} (psi)	4740	4537	4444	4073	3896	3723	3621	3283	3262	2941	2538
	lements	Load Cycle No.	γ _{pe} (%)	-0.011	-0.042	-0.065	-0.110	-0.134	-0.180	-0.210	-0.255	-0.300	-0.380	-0.55
	n bender e	Load	$\gamma_{pe}(\%)$	0.033	0.066	0.115	0.165	0.233	0.290	0.370	0.470	0.540	0.640	0.77
	psi: Estimating from bender elements		τ _{pe} (psi)	-0.9	-2.4	-3.9	-5.4	-7.0	-8.6	-10.0	-11.7	-13.4	-15.0	-16.5
	psi: Estim		τ_{pc} (psi)	1.2	2.5	4,1	5.8	7.3	8.9	11.0	12.1	14.0	15.0	17
	11933		σ _{υxt} ' (psi)	1.7	4.9	8.2	10.9	14.2	17.3	20.5	23.7	26.9	29.8	34.2
	$G_{max} =$		σ _{lic} ' (psi)	26.9	27.4	27.4	27.0	27.1	27.0	26.9	26.9	26.9	26.8	26.7
	1 acdin	a Sten	2	1 st	2nd	3rd	4th	5th	6th	7th	8th	9th	1 Oth	l I th

Table 2.4: Stress-strain data for test No. 4 (Boring SD 122, Sample S-50, Depth 225 feet)

							_		_					_			
			G/G _{max}	0.387	0.371	0.349	0.344	0.311	0.292	0.268	0.266	0.241	0.218	0.195	0.206	0.204	0.193
			γ _{avg} (%)	0.034	0.068	0.105	0.148	0.214	0.280	0.349	0.390	0.480	0.590	0.735	0.7050	0.7400	0.8600
		0.5	G _{et} (psi)	5015	4815	4524	4459	4028	3786	3472	3449	3125	2831	2531	2667	2642	2500
		Load Cycle No. 5	Υ _{ρύ} (%)	-0.012	-0.056	-0.080	-0.114	-0.145	-0.170	-0.215	-0.260	-0.300	-0.320	-0.400	-0.54	-0.66	-0.5
		Loac	(%) ∞ ¹ λ	0.056	0.079	0.130	0.182	0.282	0.390	0.482	0.520	0.660	0.860	1.070	0.87	0.82	1.22
			τ _{pe} (psi)	-1.3	-3.0	-4.6	-6.2	-8.3	-10.2	-11.7	-13.1	-15.0	-16.4	-18.2	-19.8	-21	-21
			τ _{pc} (psi)	2.1	3.5	4.9	7.0	8.9	11.0	12.5	13.8	15.0	17.0	19.0	17.8	18.1	22
lo, 4			G/G _{ma} ×	0.398	0.384	0.347	0.343	0.328	0.304	0.290	0.269	0.256	0.242	0.223	0.228	0.222	0.218
Test No. 4			$\gamma_{avg}~(\%)$	0.032	0.062	0.100	0.144	0.198	0.260	0.315	0.380	0.446	0.520	0.6350	0.6500	0.6900	0.7500
			G _{eq} (psi)	5159	4976	4500	4444	4253	3942	3762	3487	3318	3144	2890	2962	2884	2833
	lements	No. 1	γ _{pc} (%)	-0.020	-0.056	-0.090	-0.130	-0.170	-0.215	-0.270	-0.330	-0.395	-0.460	-0.56	-0.6	-0.7	-0.65
	bender e	Load Cycle No.	γ _{pc} (%)	0.043	0.068	0.110	0.158	0.225	0.305	0.360	0.430	0.497	0.580	0.71	0.7	0.68	0.85
	ating from	Ľ	τ _{pe} (psi)	-1.5	-3.0	-4.4	-6.2	-8.2	-10.0	-11.7	-13.0	-14.6	-16.1	-18.1	-20	-21	-21
	psi: Estimating from bender elements		τ _{pc} (psi)	1.8	3.2	4.6	6.6	8.6	10.5	12.0	13.5	15.0	16.6	18.6	18.5	18.8	21.5
	12970		σ _{ext} ' (psi)	2.8	6.0	9.2	12.7	16.6	20.4	23.5	26.6	29.7	32.8	36.6	39.6	41.9	42.7
	G _{max} =		σ _{lic} ' (psi)	30.3	30.6	30.6	30.5	30.6	30.4	30.5	30.4	30,4	30.4	30.4	30.4	30.5	30.5
	I adin	o Sten	1	lst	2nd	3rd	4th	5th	6th	7th	8th	9th	1 Oth	11th	12th	13th	14th

T 1'				Test	No. 1			ξ (%) 9.5 7.6 6.7 8.1 10.0 12.2 14.7 17.9				
Loading Step		Load Cy	cle No. 1	Load Cycle No. 5								
ыср	$\tau_{avg} \left(psi \right)$	γ _{avg} (%)	A _{loop} (psi)	ξ(%)	τ _{avg} (psi)	γ _{avg} (%)	A _{loop} (psi)	ξ(%)				
lst	1.18	0.018	0.000	12.5	1.2	0.023	0.000	9,5				
2nd	2.45	0.048	0.001	8.2	2.6	0.051	0.001	7.6				
3rd	4.13	0.085	0.002	7.4	4.2	0.093	0.002	6.7				
4th	5.40	0.120	0.004	9.3	5.7	0.130	0.004	8.1				
5th	7.35	0.169	0.009	11.4	7.4	0.185	0.009	10.0				
6th	8,70	0.233	0.018	13,8	8.8	0.255	0.017	12.2				
7th	10.25	0.295	0.031	16.2	10.4	0.355	0.034	14.7				
8th	11.90	0.405	0.050	16.6	12.2	0.510	0.070	17.9				
9th	13.25	0.495	0.075	18.2	13.6	0.630	0.114	21.1				
10th	14.90	0.680	0.116	18.2	15.1	0.985	0.202	21.6				
11th	16.25	0,800	0,152	18.6	16.6	1,283	0.260	19,5				

Table 3.1: Damping data No. 1 (Boring SD 122, Sample S-36, Depth 160 feet)

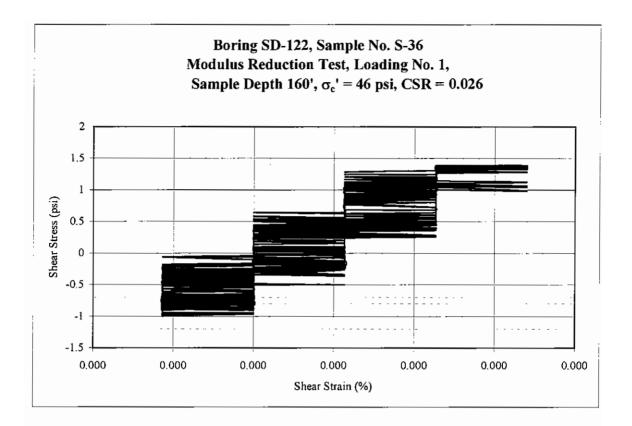
				Test l	No. 2	·				
Loading Step		Load Cy	cle No. 1		Load Cycle No. 5					
Step	τ _{avg} (psi)	γ_{nvg} (%)	A _{loop} (psi)	ξ(%)	τ_{avg} (psi)	γ_{avg} (%)	A _{loop} (psi)	ξ(%)		
1 st	1.05	0.021	0.000	14.3	1.1	0.023	0.000	13.7		
2nd	2,60	0.065	0.001	9,1	2.6	0.064	0.001	9.3		
3rd	4.20	0.112	0.002	8.5	4.2	0.113	0.002	8.2		
4th	5,50	0.158	0.006	10.2	5.7	0.173	0.005	8.2		
5th	7.30	0.219	0.011	10.8	7.3	0.236	0.010	9.6		
6th	8.60	0.295	0.019	12.0	9.0	0.315	0.019	11.0		
7th	10.20	0.363	0.034	14.6	10.4	0.411	0.035	13.0		
8th	11.80	0.453	0.050	15.0	12.0	0,555	0.066	15.8		
9th	13.25	0.525	0.076	17.4	13.7	0.760	0.112	17.1		
10th	15.00	0.710	0.113	16.9	15.4	0.975	0.193	20.4		
11th	16.25	0,870	0.161	18.1	16.8	1.285	0.288	21.3		

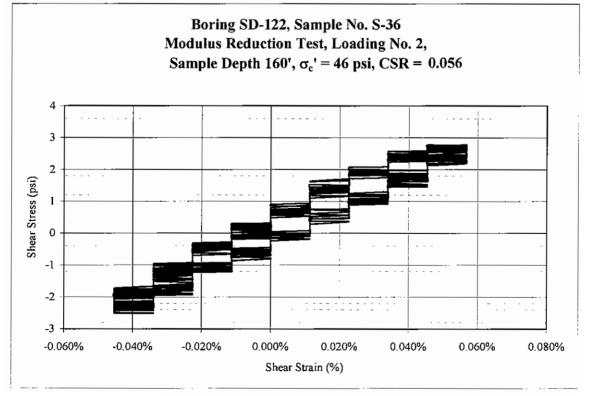
Terdine				Test	No. 3					
Loading Step		Load Cy	cle No. I		Load Cycle No. 5					
Step	τ _{avg} (psi)	γ _{avg} (%)	A _{loop} (psi)	ξ(%)	τ _{avg} (psi)	γ_{avg} (%)	A _{loop} (psi)	ξ(%)		
l st	1.05	0.022	0.000	12.1	1.1	0.023	0,000	14.8		
2nd	2.45	0.054	0.001	10.4	2.6	0.056	0.001	8,7		
3rd	4,00	0.090	0.002	10.4	4.1	0.098	0.002	8.8		
4th	5,60	0.138	0.005	10.1	5.7	0.145	0.004	8.5		
5th	7.15	0,184	0,009	11.2	7.4	0.195	0.008	9.2		
6th	8.75	0.235	0.015	11.4	9.0	0.250	0.014	10.1		
7th	10,50	0.290	0.023	12.1	10.7	0.325	0.024	10.9		
8th	11.90	0.363	0.034	12.4	12.2	0.398	0.037	12.0		
9th	13,70	0.420	0.047	13.0	13.8	0.480	0.055	13.3		
10th	15.00	0.510	0.066	13.7	15.5	0,590	0.081	14.2		
11th	16.75	0.660	0.094	13.5	17.8	0.790	0.142	16.1		

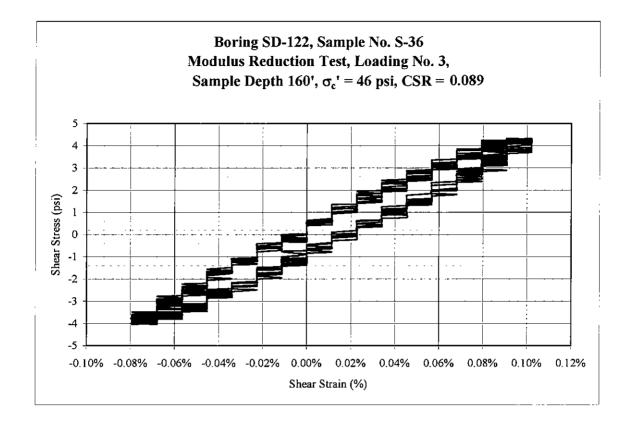
Table 3.3: Damping data for test No. 3 (Boring SD 103, Sample S-42, Depth 190 feet)

Loading				Test 1	No. 4			
Step		Load Cy	cle No. 1			Load Cy	cle No. 5	
	τ_{avg} (psi)	γ_{avg} (%)	A _{loop} (psi)	ξ(%)	τ _{avg} (psi)	γ_{avg} (%)	A _{loop} (psi)	ξ(%)
lst	1,63	0.032	0.0002	7.3	1.7	0.034	0.000	9.4
2nd	3.09	0,062	0.001	7.4	3,3	0,068	0,001	6.9
3rd	4.50	0.100	0.002	7.1	4.8	0.105	0.002	6.1
4th	6.40	0.144	0.005	8.3	6,6	0.148	0.005	7,6
5th	8.40	0.198	0.010	9.1	8.6	0.214	0.009	8.0
6th	10.25	0.260	0.017	10.1	10.6	0.280	0.017	9.1
7th	11.85	0.315	0.025	10,5	12.1	0.349	0.026	9.6
8th	13.25	0.380	0.034	10.7	13.5	0.390	0.037	11.2
9th	14.80	0.446	0.046	11.2	15.0	0.480	0.050	11.1
10th	16,35	0,520	0.065	12.1	16.7	0.590	0.078	12.6
11th	18.35	0.635	0.096	13,1	18,6	0,735	0.117	13,6
12th	19.25	0.650	0.101	12.9	18.8	0.705	0.103	12.4
13th	19.90	0.690	0.094	10.9	19.6	0.740	0,069	7.6
l 4th	21,25	0.750	0,130	13.0	21.5	0,860	0.157	13.5

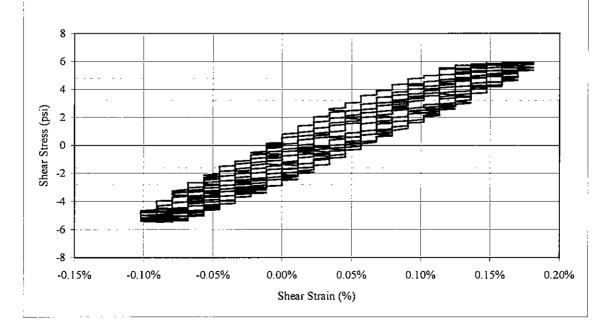
References

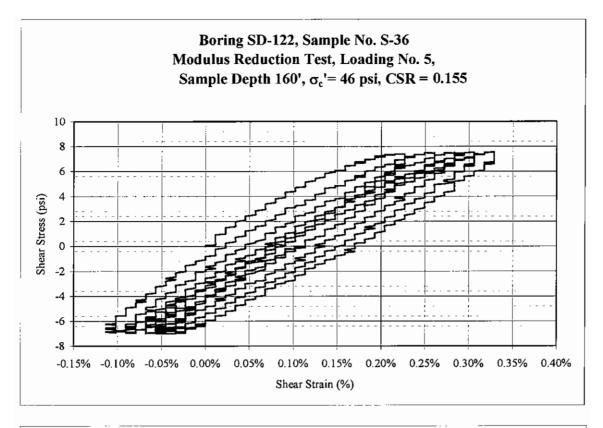

Mladen Vucetic and Ricardro Dobry (1986). "Degradation of Marine Clays Under Cyclic Loading." *Journal of Geotechnical Engineering.*, ASCE, 114(2), 133-149

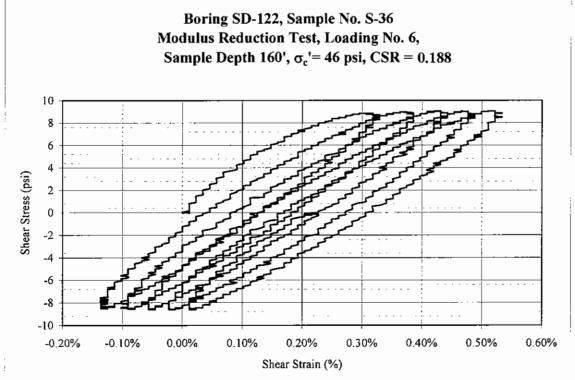

Mladen Vucetic and Ricardro Dobry (1991). "Effect of Soil Plasticity on Cyclic Response." *Journal of Geotechnical Engineering.*, ASCE, 117(1), 89-107

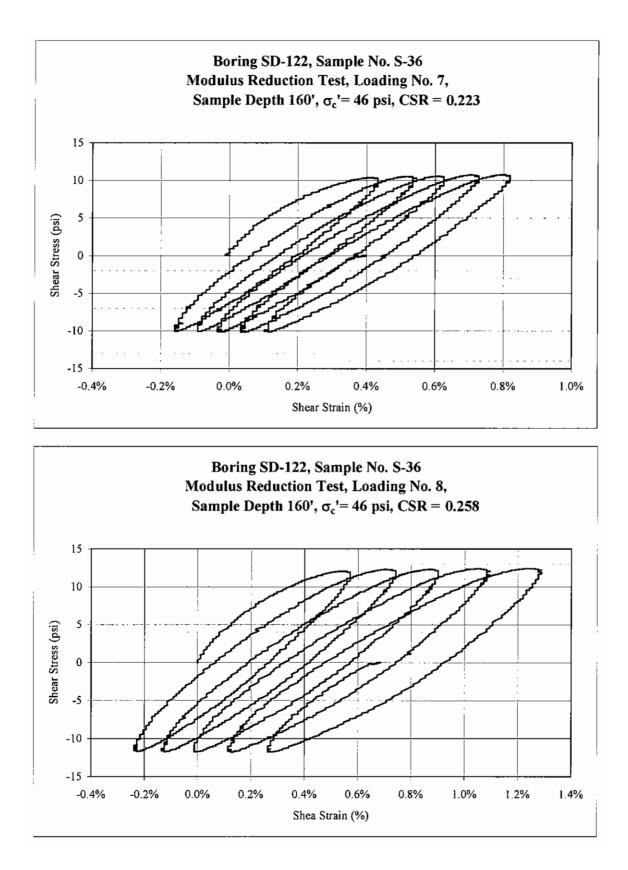

Appendix A

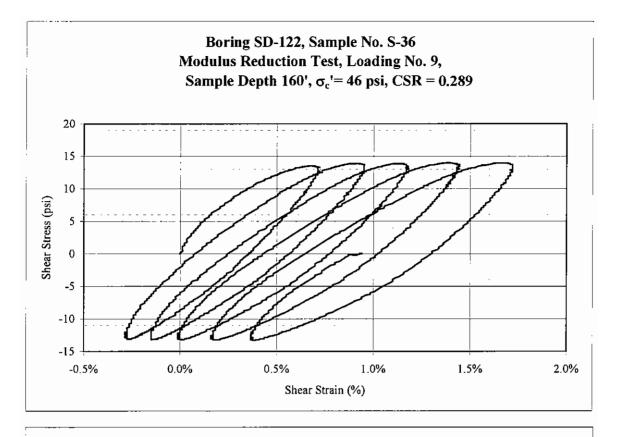
Cyclic Stress-Strain Data for the Four Tests

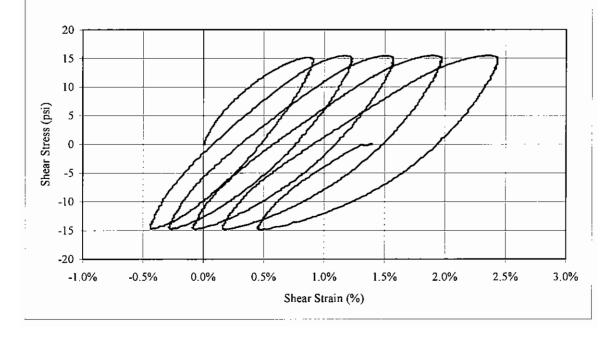

Test 1 Boring SD-122, Sample No. S-36

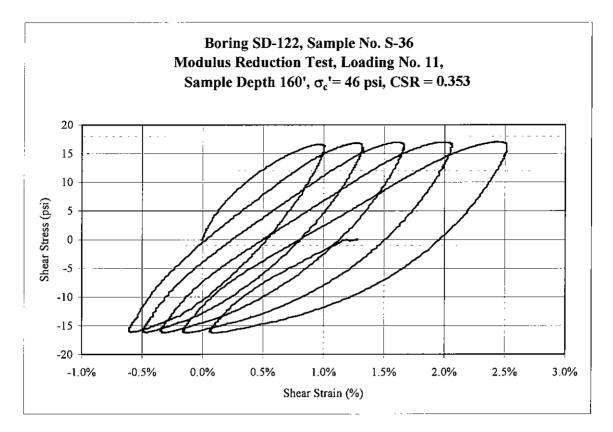


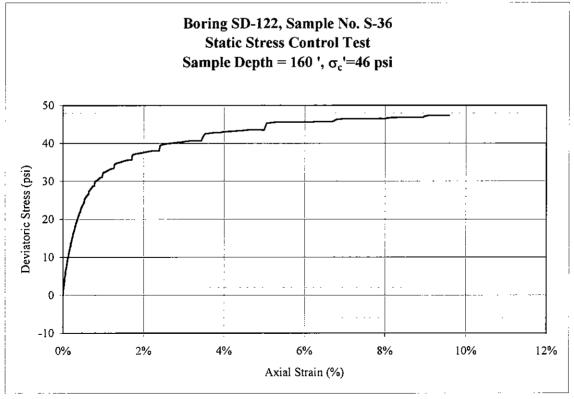


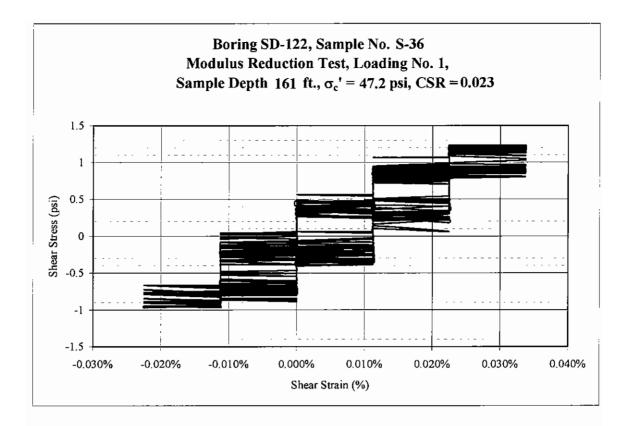


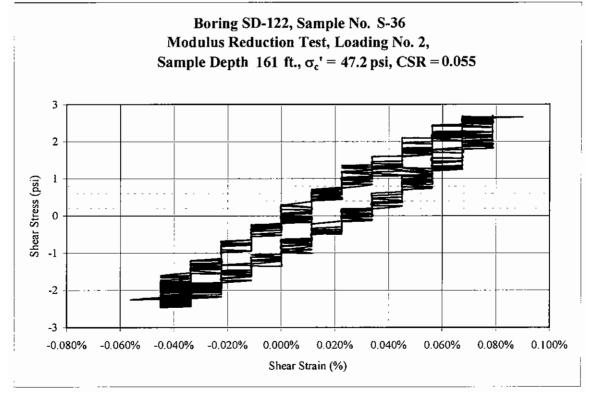

Boring SD-122, Sample No. S-36 Modulus Reduction Test, Loading No. 4, Sample Depth 160', σ_c '= 46 psi, CSR = 0.122

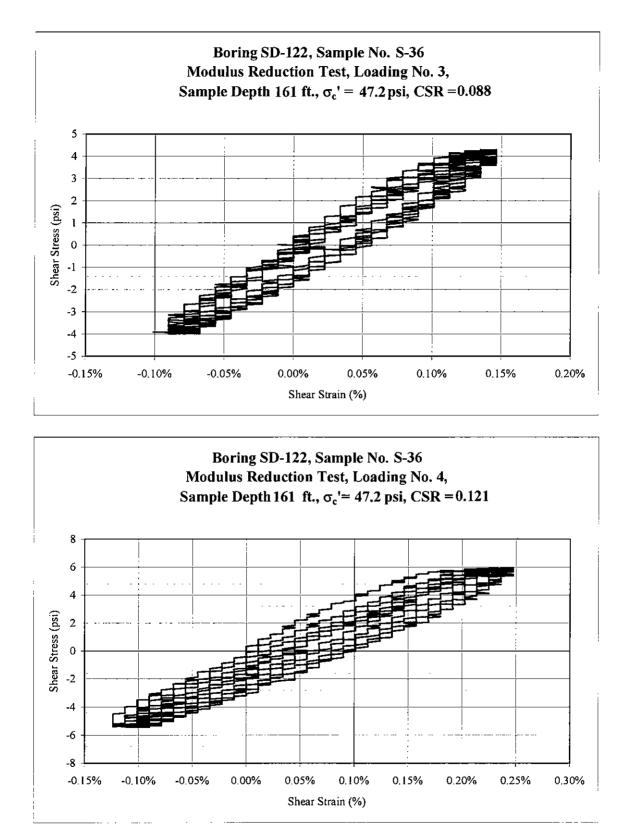


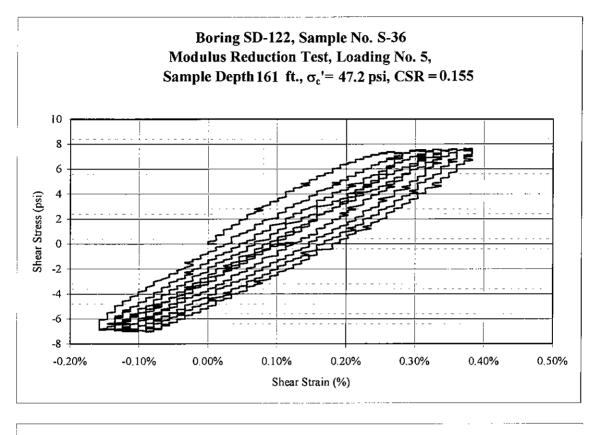




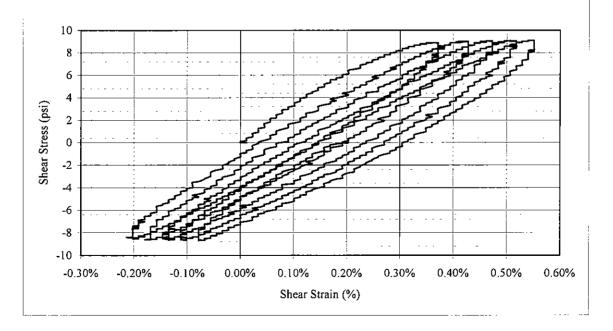

Boring SD-122, Sample No. S-36 Modulus Reduction Test, Loading No. 10, Sample Depth 160', σ_c'= 46 psi, CSR = 0.322

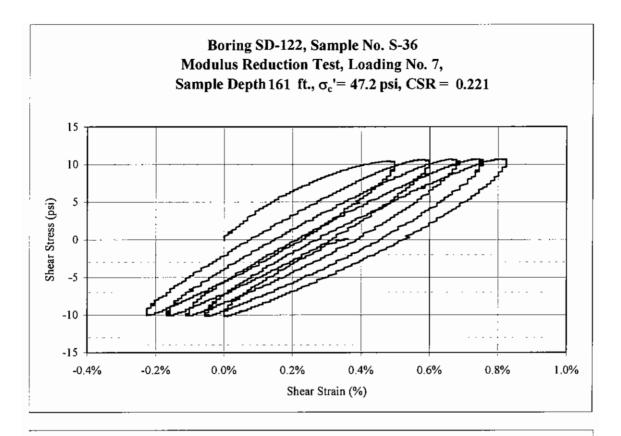


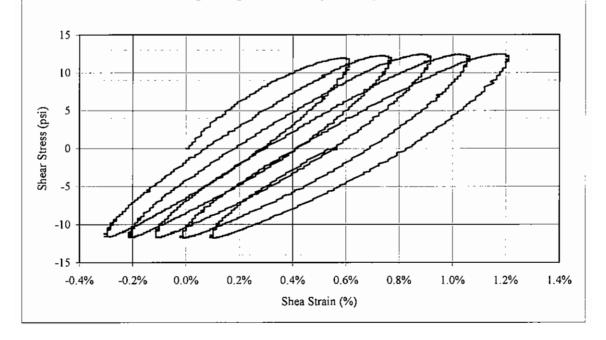


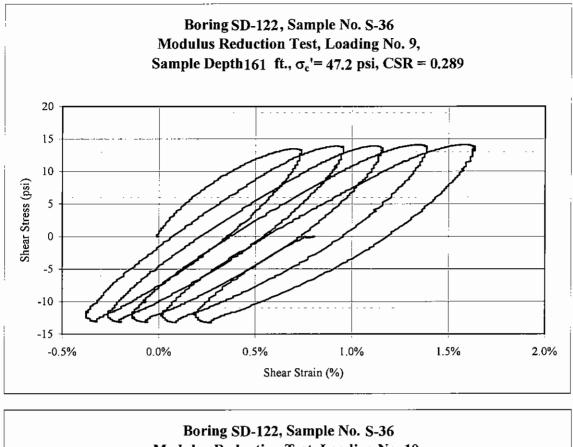


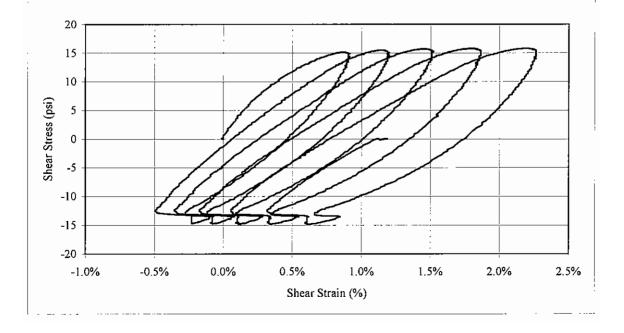
Test 2 Boring SD-122, Sample No. S-36

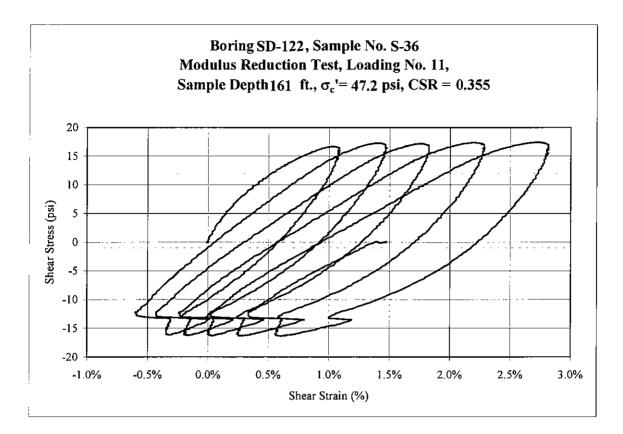


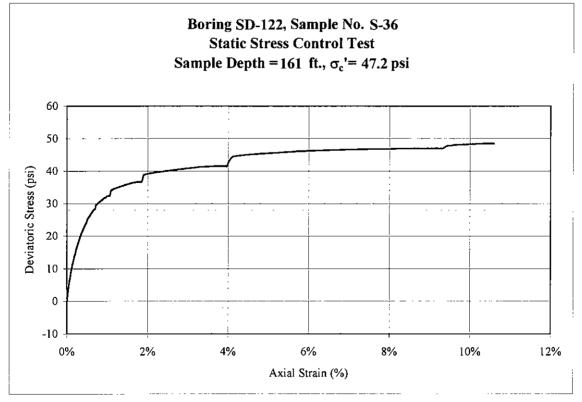




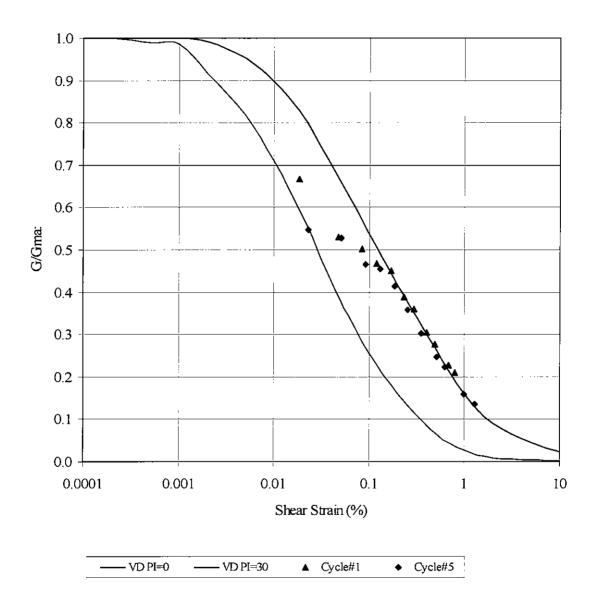

Boring SD-122, Sample No. S-36 Modulus Reduction Test, Loading No. 6, Sample Depth 161 ft., σ_c '= 47.2 psi, CSR = 0.189




Boring SD-122, Sample No. S-36 Modulus Reduction Test, Loading No. 8, Sample Depth 161 ft., σ_c '= 47.2 psi, CSR = 0.256

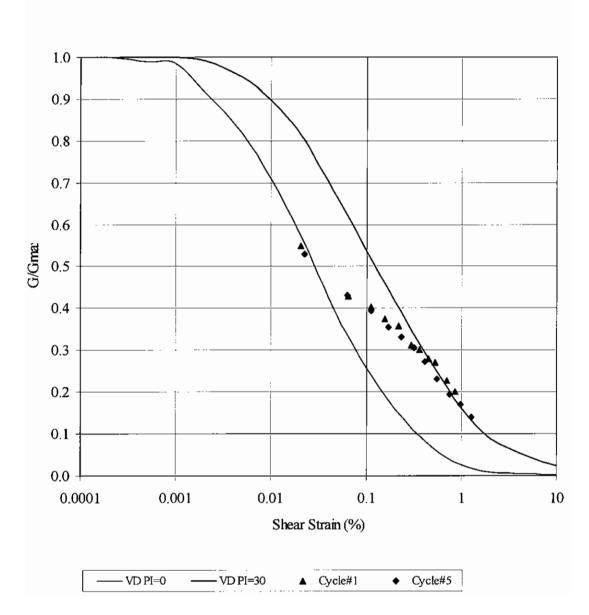


Modulus Reduction Test, Loading No. 10, Sample Depth 161 ft., σ_c '= 47.2 psi, CSR = 0.323

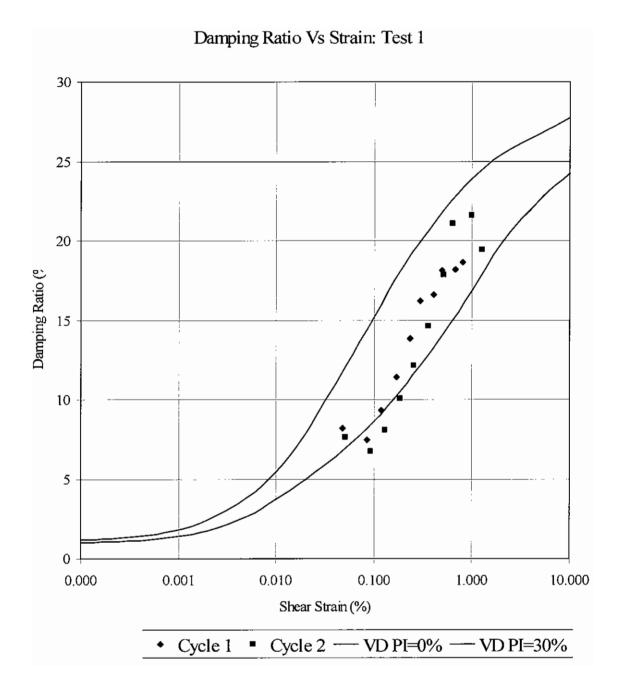


Appendix B

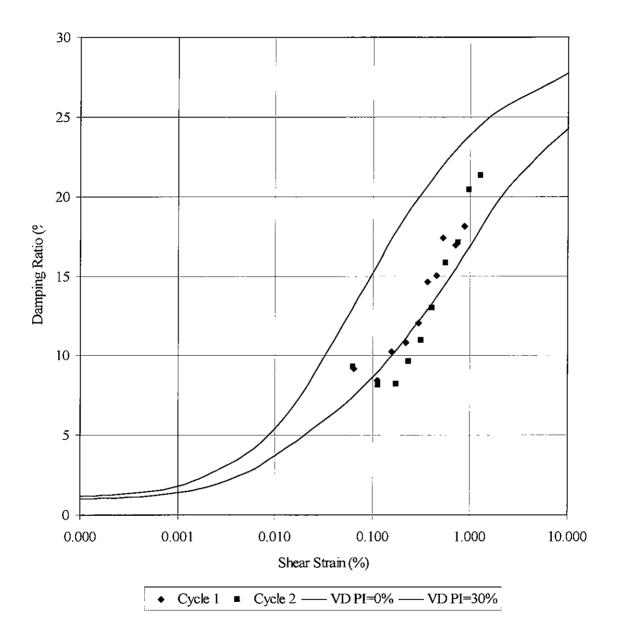
Variation of Soil Modulus with Cyclic Shear Strain


Test 1 Boring SD-122, Sample No. S-36

Modulus Reduction: Test 1


Test 2 Boring SD-122, Sample No. S-36

Modulus Reduction: Test 2


Appendix C Variation of Damping Ratio with Cyclic Shear Strain

Test 1 Boring SD-122, Sample No. S-36

Test 2 Boring SD-122, Sample No. S-36

Damping Ratio Vs Strain: Test 2

D.2 SEATTLE MONORAIL PROJECT GEOTECHNICAL CHARACTERIZATION REPORT EXCERPTS

CONTENTS

- Text Excerpt from "Geology" Section
- Figure 2 Plan Key and Exploration Overviews (sheet 2 of 5)
- Figure 3 Site and Exploration Plan (sheet 18 of 51)
- Figure 4 Profile Legend and Geologic Unit Explanation
- Figure 5 Generalized Subsurface Profile (sheet 17 of 50)

Geology Text Excerpt

The following description of Seattle geology is excerpted from the SMP GCR Addendum No. 110-5 (Shannon & Wilson, 2004e). The "project alignment" and "project corridor" mentioned below refer to the formerly proposed SMP alignment. Detailed descriptions of geologic units from the SMP GCR were not included below if those units were not encountered in the vicinity of the array.

"An understanding of the geologic history and the depositional processes that produced the soil stratigraphy in the project area is useful for understanding the engineering characteristics and predicted behavior of the deposits encountered along the project alignment. In addition, this information can be used to make stratigraphic correlation between borings. It also provides a framework for anticipating subsurface conditions that may not have been disclosed directly by the exploration program, but may be reasonably expected based on past local project experience with similar geologic units."

D.2.1 Regional Geology

"The Puget Sound area has been subjected to six or more major glaciations during the Pleistocene Epoch (2 million years ago to about 10,000 years ago). The ice sheet of each glaciation overrode and compacted underlying soils to a very dense or hard state (overconsolidated). During the most recent ice coverage of the central Puget Lowland (Vashon Stade of Fraser Glaciation), the thickness of ice is estimated to have been about 3,000 feet in the alignment area. The last ice covering the alignment area receded about 13,500 years ago, leaving a landscape sculpted into a series of north-south-trending ridges and valleys. These deep valleys were commonly, partially, or completely filled with recessional glacial deposits and recent Holocene deposits. As the last ice sheet retreated, sea level changed as a result of isostatic readjustment of the land and rising water levels from the melting of the ice worldwide. At times during the last recession, sea level was considerably different from the present sea level.

Tectonically, the Puget Lowland is located in the fore arc of the Cascadia Subduction Zone. The tectonics and seismicity of the region are the result of the relative northeastward subduction of the Juan de Fuca Plate beneath the North American Plate. North-south compression is being accommodated primarily beneath the Puget Lowland by a series of west- and northwest-trending thrust faults that extend to depths of about 12 miles. The nearest potentially active fault to the project is the Seattle Fault, a collective term for a series of four or more east-west-trending south-dipping fault splays, beneath Seattle. Recent geologic evidence indicates that ground surface rupture from movement on this fault zone occurred as recently as 1,100 years before present. One or more of these splays likely cross the southern portion of the alignment. Refer to the Seismic Ground Motion Study (SGMS), February 2004[b], prepared by Shannon & Wilson, Inc. for more information regarding the tectonic setting of the Puget Sound region, fault locations, fault activity, and seismicity."

D.2.2 Geologic Unit Descriptions

"Based on the soils encountered in the subsurface exploration program and on exploration logs completed by others in the project vicinity, the following is a stratigraphic outline for the Holocene and Pleistocene geologic history (youngest to oldest) along the project corridor:

- Holocene (not glacially consolidated, nonglacial)
 - Fill (Hf)
 - Landslide Debris (Hls)
 - Alluvium (Ha)
 - Estuarine (He)
 - Peat Deposits (Hp)
 - Beach Deposits (Hb)
 - Lacustrine Deposits (Lake) (Hl)
 - Reworked Glacial Deposits (Hrw)
- Vashon (glacial)
 - Not Glacially Consolidated Sediments
 - Recessional Outwash (Qvro)
 - Recessional Lacustrine Deposits (Qvrl)
 - Ice-Contact Deposits (Qvri)
 - Ablation Till (Qvat)
 - Glacially Consolidated Sediments
 - Lodgement Till (Qvt)
 - Glacial Till-Like Deposits (Qvd)
 - Advance Outwash (Qva)
 - Glaciolacustrine Deposits (Qvgl)
- Pre-Vashon (glacially consolidated, nonglacial, deposited during interglacial periods)
 - Fluvial Deposits (Qpnf)
 - Lacustrine Deposits (Qpnl)
 - Peat Deposits (Qpnp)
 - Landslide Deposits (Qpls)

- Pre-Vashon (glacial)
 - Outwash (Qpgo)
 - Glaciolacustrine Deposits (Qpgl)
 - Till (Qpgt)
 - Till-Like Deposits (Qpgd)
 - Glaciomarine Drift (Qpgm)

Soil strata have been delineated according to geologic unit. Geologic units were defined based on depositional environment and general geologic characteristics. The geologic nomenclature used for the project and corresponding general soil characteristics are described on Figure 4 and in the text below. These geologic units are interpretive and based on our opinion of the grouping of complex sediments and soil types into units appropriate for the project."

D.2.2.1 Holocene (Nonglacial) Units

"The Holocene soils (Hf, Hls, Ha, He, Hp, Hb, Hl, and Hrw) have all been deposited since the retreat of the last glacial ice sheet and have not been glacially overridden. The properties of these soils are often quite variable.

Fill (Hf) has widely variable properties, depending on the material used as fill and whether the fill was placed in an engineered or nonengineered fashion. Most of the fill encountered along the alignment consists of loose to dense granular material, such as silty sand. Some of this fill may have been hydraulically placed. Gravel, cobbles, and boulders are common in this unit, particularly in nonengineered fill. About 50 percent of cobbles and boulders that were encountered during explorations for this project were encountered within the fill soils. Fill soils were identified from the presence of irregular clasts of one soil type within soil of another type, or from the presence of debris such as fragments of glass, asphalt, concrete, wood, sawdust, or coal. In general, the presence of debris may be more frequent in areas where historical fill placement occurred during the settlement of Seattle, such as the SODO and Interbay areas. These soils also show zones of iron-oxide staining. Because drilling typically took place along streets or sidewalks, some of the fill encountered may represent backfill material for utility trenches or fill placed during the original grading of the street."

"Alluvium (Ha) is primarily present in the SODO area and extends to significant depths. Ha soils are also present locally in the West Seattle, Downtown, and Interbay Segments. This deposit generally consists of loose to medium dense sand, sandy silt, and silty sand with scattered fine gravel. Cobbles and boulders may be anticipated within this unit, but were not encountered in the explorations. Estuarine deposits (He) are also primarily present in the SODO area, generally interlayered within and underlying the Ha soils. He soils are also present locally in the West Seattle, Downtown, and Interbay Segments. This deposit generally consists of loose to medium dense silt and sandy silt to very soft to stiff, clayey silt to silty clay. Interbeds of organic-rich soils exist within this unit."

"Beach deposits (Hb) were encountered along the West Seattle, SODO, Interbay, and Ballard Crossing Segments. These deposits are generally located near the base of the Holocene units. They generally consist of sand and gravel and may also contain scattered cobbles and locally cohesive fines. In places, Hb deposits extend to considerable depths as a result of sea level and shoreline position changes since the last glaciation. Scattered to abundant shell fragments and wood debris were observed in these soils."

"Reworked glacial deposits (Hrw) were encountered in the SODO area. These deposits are generally located near the base of the Holocene units and may be a mixture of more than one soil type. This unit is commonly associated with Hb deposits overlying glacially overridden soils. Scattered cobbles and boulders may be found in Hrw deposits; however, none were encountered in the explorations."

D.2.2.2 Quaternary Vashon Units

"The recessional-type deposits (Qvro, Qvrl, Qvri, and Qvat) were deposited during the wasting of the glacial ice and, therefore, were not overridden by the Vashon ice sheet. The rest of the Vashon sediments (Qvt, Qvd, Qva, and Qvgl) are older and were overridden by the advancing Vashon glacier after deposition. Generally, these deposits are very dense or hard and overconsolidated."

"Recessional lacustrine deposits (Qvrl) consist of dense to very dense, silty, fine sand and soft to hard, silty clay to clayey silt. The clayey sediments are generally of low plasticity. Qvrl deposits were encountered below the West Seattle, SODO, and Ballard Crossing Segments. Cobbles and boulders, if present, are most likely to exist at the contact with the underlying sediments."

D.2.2.3 Quaternary Pre-Vashon Nonglacial (Interglacial) Units

"During the time period between two glaciations (interglacial), sediments (Qpnf, Qpnl, Qpnp, and Qpls) were deposited by nonglacial processes. These sediments commonly contain organic material and may have more discontinuous distribution because of the nature of the depositional processes. These sediments have been overridden by one or more glaciations and are generally very dense or hard. Qpnl and Qpnp would not likely

contain boulders, based on their depositional environments. However, these sediments may have been deposited on top of an erosional surface on pre-existing glacial or nonglacial sediments. As such, Qpnl and Qpnp nonglacial soils may contain relict cobbles and boulders along the erosional surface at the base of the unit. Qpnf and Qpls may contain cobbles and boulders due to their inherent depositional environments."

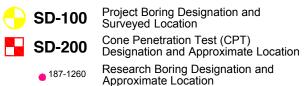
D.2.2.4 Quaternary Pre-Vashon Glacial Units

"The following units (Qpgo, Qpgl, Qpgt, Qpgd, and Qpgm) represent sediments deposited by glacial processes during one of the several glacial episodes prior to the Vashon glaciation. All pre-Vashon soils have been glacially consolidated and are generally very dense or very stiff to hard. All of these units, except Qpgm, have Vashon equivalents because, generally, the same processes took place during each of the glacial episodes. As such, the differentiation of Vashon from pre-Vashon sediments was largely accomplished through stratigraphic position.


Outwash (Qpgo) was encountered in most areas along the alignment. These deposits typically consist of very dense, clean to silty, fine or fine to medium sand with a trace of coarse sand and fine gravel. This unit contains scattered cobbles and boulders. These sediments are very similar to Qva and Qpnf and were differentiated from them by the lack of organics or from stratigraphy.

Glaciolacustrine deposits (Qpgl) consist of very stiff to hard, silty clay and, to a lesser extent, clayey silt with scattered beds of silt and silty, fine sand. Qpgl includes both lowand high-plasticity clay but is generally of higher plasticity than Qvgl soil. Qpgl soils are commonly laminated to bedded but can also be massive (lacking bedding). The Qpgl soils sometimes exhibit scattered to abundant sheared and slickensided zones. These features are more commonly found in darker gray clays with higher plasticity. Qpgl soils were encountered below most of the alignment segments, except the Ballard Segment, where the glacial stratigraphy is predominantly Vashon age. Ice-rafted gravel, cobbles, and boulders (dropstones) may be encountered within this unit.

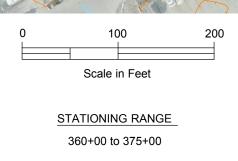
Till (Qpgt) was encountered in the SODO and Interbay Segments. Where encountered, Qpgt soils were similar to Qvt soils and consisted of very dense, gravelly, silty sand to silty, gravelly sand with nonplastic to low plasticity fines. Along the alignment, Qpgt soils are commonly gradational with Qpgm. Cobbles and boulders are common in this unit."


"Glaciomarine drift (Qpgm) generally consists of poorly graded granular material with a clayey matrix (a clayey diamict). Qpgm has a grain size distribution similar to till (Qvt and Qpgt). Qpgm soils may vary considerably, from very dense, gravelly, silty sand

with a trace of clay, to silty, clayey sand and hard, silty clay with small amounts of sand and gravel. Cobbles and boulders are common in this unit. Qpgm was encountered along the West Seattle, SODO, and Downtown Segments and commonly grades into and contains layers of Qpgl."

LEGEND

Research Boring Designation and Approximate Location


Final Staff Recommended Alignment for Green Line

Topographic Contours With Elevation in Feet

NOTES

I. This figure is based on drawings and aerial photographs provided by Bechtel/Jacobs and the City of Seattle. The alignment and stations were compiled from the following .dwg files received 3-4-04: gl01-00-plan-J, gl02-00-plan-J, gl03-00-plan-J, gl04-00-plan-J, gl05-00-plan-J, gl06-00-plan-J and the following .dwg files received 2-25-04: gl01-00-plan-J_nucor, GL01_cCN, and GL01_cLS.

2. Vertical datum: NAVD88.

Revised for Addendum No. 110-1

Seattle Monorail Project Seattle, Washington

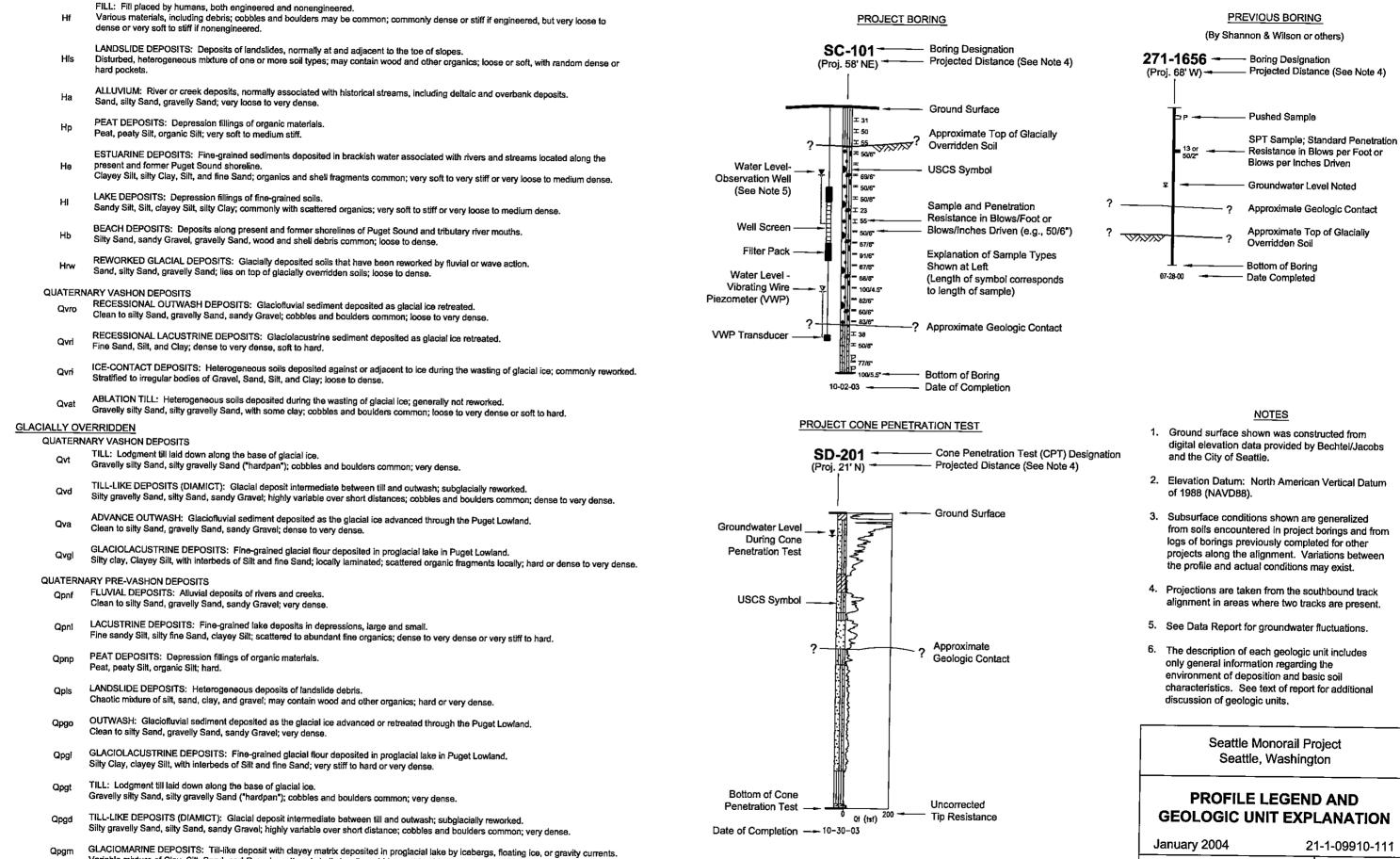
SITE AND EXPLORATION PLAN

March 2004

21-1-09910-111

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

FIG. 3 Sheet 18 of 51

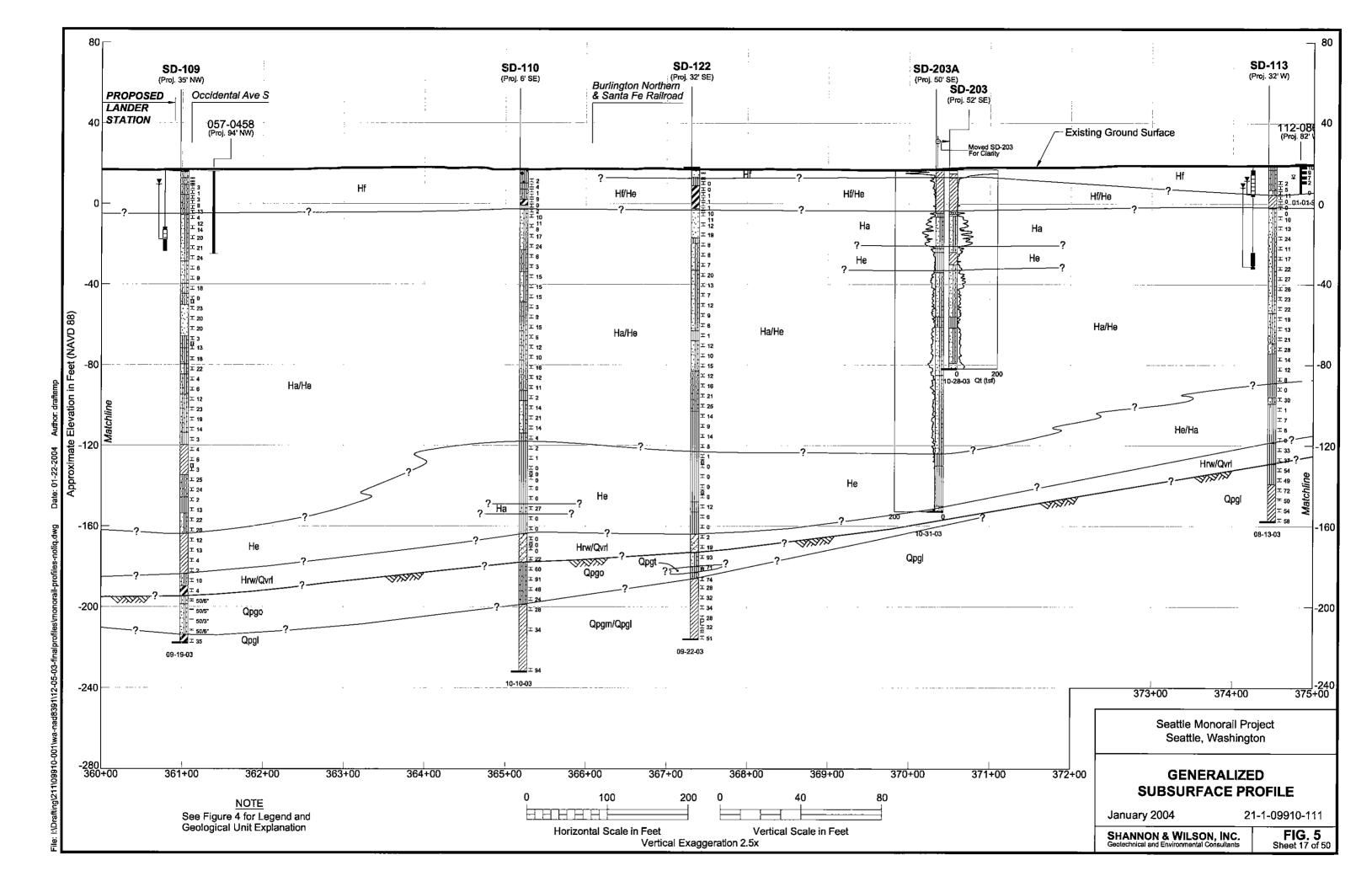

GEOLOGIC UNIT EXPLANATION

Variable mixture of Clay, Silt, Sand, and Gravel; scattered shells locally; cobbles and boulders common; very dense or hard.

NON OVERRIDDEN

HOLOCENE DEPOSITS

PRO



FILE LEGEND

21-1-09910-111

SHANNON & WILSON, INC.

FIG. 4

Important Information ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors that were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary, because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports, and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties;

rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland